985 resultados para face classification
Resumo:
Next Generation Sequencing (NGS) has revolutionised molecular biology, resulting in an explosion of data sets and an increasing role in clinical practice. Such applications necessarily require rapid identification of the organism as a prelude to annotation and further analysis. NGS data consist of a substantial number of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. Highly accurate results have been obtained for restricted sets using SVM classifiers, but such methods are difficult to parallelise and success depends on careful attention to feature selection. This work examines the problem at very large scale, using a mix of synthetic and real data with a view to determining the overall structure of the problem and the effectiveness of parallel ensembles of simpler classifiers (principally random forests) in addressing the challenges of large scale genomics.
Resumo:
In this paper, we propose a new multi-class steganalysis for binary image. The proposed method can identify the type of steganographic technique used by examining on the given binary image. In addition, our proposed method is also capable of differentiating an image with hidden message from the one without hidden message. In order to do that, we will extract some features from the binary image. The feature extraction method used is a combination of the method extended from our previous work and some new methods proposed in this paper. Based on the extracted feature sets, we construct our multi-class steganalysis from the SVM classifier. We also present the empirical works to demonstrate that the proposed method can effectively identify five different types of steganography.
Resumo:
This paper presents the findings from a conversation between an Aboriginal educator and a non-Indigenous pre-service educator about the importance and complexities of building productive partnerships. Although the participants focused on the challenges and benefits of building relationships between Aboriginal and Torres Strait Islander educators and non-Indigenous educators in Australian early years settings, the more significant outcome of the meeting was the personal connection two young women were able to make when a friendship began to develop. The project was intended to enable an opportunity for the participants ‘to engage in reflexivity on their pedagogic work’, something Mills (2012) understands as crucial to the support of social justice and transformation in the classroom.
Resumo:
Background Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to dispersed information resources and a vast amount of manual processing of unstructured information, accurate point-of-care diagnosis is often difficult. Aims The aim of this research is to report initial experimental evaluation of a clinician-informed automated method for the issue of initial misdiagnoses associated with delayed receipt of unstructured radiology reports. Method A method was developed that resembles clinical reasoning for identifying limb abnormalities. The method consists of a gazetteer of keywords related to radiological findings; the method classifies an X-ray report as abnormal if it contains evidence contained in the gazetteer. A set of 99 narrative reports of radiological findings was sourced from a tertiary hospital. Reports were manually assessed by two clinicians and discrepancies were validated by a third expert ED clinician; the final manual classification generated by the expert ED clinician was used as ground truth to empirically evaluate the approach. Results The automated method that attempts to individuate limb abnormalities by searching for keywords expressed by clinicians achieved an F-measure of 0.80 and an accuracy of 0.80. Conclusion While the automated clinician-driven method achieved promising performances, a number of avenues for improvement were identified using advanced natural language processing (NLP) and machine learning techniques.
Resumo:
Background Cancer monitoring and prevention relies on the critical aspect of timely notification of cancer cases. However, the abstraction and classification of cancer from the free-text of pathology reports and other relevant documents, such as death certificates, exist as complex and time-consuming activities. Aims In this paper, approaches for the automatic detection of notifiable cancer cases as the cause of death from free-text death certificates supplied to Cancer Registries are investigated. Method A number of machine learning classifiers were studied. Features were extracted using natural language techniques and the Medtex toolkit. The numerous features encompassed stemmed words, bi-grams, and concepts from the SNOMED CT medical terminology. The baseline consisted of a keyword spotter using keywords extracted from the long description of ICD-10 cancer related codes. Results Death certificates with notifiable cancer listed as the cause of death can be effectively identified with the methods studied in this paper. A Support Vector Machine (SVM) classifier achieved best performance with an overall F-measure of 0.9866 when evaluated on a set of 5,000 free-text death certificates using the token stem feature set. The SNOMED CT concept plus token stem feature set reached the lowest variance (0.0032) and false negative rate (0.0297) while achieving an F-measure of 0.9864. The SVM classifier accounts for the first 18 of the top 40 evaluated runs, and entails the most robust classifier with a variance of 0.001141, half the variance of the other classifiers. Conclusion The selection of features significantly produced the most influences on the performance of the classifiers, although the type of classifier employed also affects performance. In contrast, the feature weighting schema created a negligible effect on performance. Specifically, it is found that stemmed tokens with or without SNOMED CT concepts create the most effective feature when combined with an SVM classifier.
Resumo:
Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.
Resumo:
This paper describes a novel system for automatic classification of images obtained from Anti-Nuclear Antibody (ANA) pathology tests on Human Epithelial type 2 (HEp-2) cells using the Indirect Immunofluorescence (IIF) protocol. The IIF protocol on HEp-2 cells has been the hallmark method to identify the presence of ANAs, due to its high sensitivity and the large range of antigens that can be detected. However, it suffers from numerous shortcomings, such as being subjective as well as time and labour intensive. Computer Aided Diagnostic (CAD) systems have been developed to address these problems, which automatically classify a HEp-2 cell image into one of its known patterns (eg. speckled, homogeneous). Most of the existing CAD systems use handpicked features to represent a HEp-2 cell image, which may only work in limited scenarios. We propose a novel automatic cell image classification method termed Cell Pyramid Matching (CPM), which is comprised of regional histograms of visual words coupled with the Multiple Kernel Learning framework. We present a study of several variations of generating histograms and show the efficacy of the system on two publicly available datasets: the ICPR HEp-2 cell classification contest dataset and the SNPHEp-2 dataset.
Resumo:
Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.
Resumo:
Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.
Resumo:
Existing multi-model approaches for image set classification extract local models by clustering each image set individually only once, with fixed clusters used for matching with other image sets. However, this may result in the two closest clusters to represent different characteristics of an object, due to different undesirable environmental conditions (such as variations in illumination and pose). To address this problem, we propose to constrain the clustering of each query image set by forcing the clusters to have resemblance to the clusters in the gallery image sets. We first define a Frobenius norm distance between subspaces over Grassmann manifolds based on reconstruction error. We then extract local linear subspaces from a gallery image set via sparse representation. For each local linear subspace, we adaptively construct the corresponding closest subspace from the samples of a probe image set by joint sparse representation. We show that by minimising the sparse representation reconstruction error, we approach the nearest point on a Grassmann manifold. Experiments on Honda, ETH-80 and Cambridge-Gesture datasets show that the proposed method consistently outperforms several other recent techniques, such as Affine Hull based Image Set Distance (AHISD), Sparse Approximated Nearest Points (SANP) and Manifold Discriminant Analysis (MDA).
Resumo:
This thesis investigated both the potential for Business Continuity Management to enhance organisational reliability, and appropriate levels of Business Continuity Management capability resident in a number of Australian international and regional airports. Findings indicated that a host of regulatory and business processes including Business Continuity Management can assist in creating reliability in aviation infrastructure systems in Australia. Further, the thesis developed a multi-level maturity assessment framework for defining the depth of implementation of Business Continuity Management capabilities in airports, along with other recommendations to improve functional reliability of airport operations.
Resumo:
Sensing the mental, physical and emotional demand of a driving task is of primary importance in road safety research and for effectively designing in-vehicle information systems (IVIS). Particularly, the need of cars capable of sensing and reacting to the emotional state of the driver has been repeatedly advocated in the literature. Algorithms and sensors to identify patterns of human behavior, such as gestures, speech, eye gaze and facial expression, are becoming available by using low cost hardware: This paper presents a new system which uses surrogate measures such as facial expression (emotion) and head pose and movements (intention) to infer task difficulty in a driving situation. 11 drivers were recruited and observed in a simulated driving task that involved several pre-programmed events aimed at eliciting emotive reactions, such as being stuck behind slower vehicles, intersections and roundabouts, and potentially dangerous situations. The resulting system, combining face expressions and head pose classification, is capable of recognizing dangerous events (such as crashes and near misses) and stressful situations (e.g. intersections and way giving) that occur during the simulated drive.
Resumo:
Time series classification has been extensively explored in many fields of study. Most methods are based on the historical or current information extracted from data. However, if interest is in a specific future time period, methods that directly relate to forecasts of time series are much more appropriate. An approach to time series classification is proposed based on a polarization measure of forecast densities of time series. By fitting autoregressive models, forecast replicates of each time series are obtained via the bias-corrected bootstrap, and a stationarity correction is considered when necessary. Kernel estimators are then employed to approximate forecast densities, and discrepancies of forecast densities of pairs of time series are estimated by a polarization measure, which evaluates the extent to which two densities overlap. Following the distributional properties of the polarization measure, a discriminant rule and a clustering method are proposed to conduct the supervised and unsupervised classification, respectively. The proposed methodology is applied to both simulated and real data sets, and the results show desirable properties.
Resumo:
The proliferation of news reports published in online websites and news information sharing among social media users necessitates effective techniques for analysing the image, text and video data related to news topics. This paper presents the first study to classify affective facial images on emerging news topics. The proposed system dynamically monitors and selects the current hot (of great interest) news topics with strong affective interestingness using textual keywords in news articles and social media discussions. Images from the selected hot topics are extracted and classified into three categorized emotions, positive, neutral and negative, based on facial expressions of subjects in the images. Performance evaluations on two facial image datasets collected from real-world resources demonstrate the applicability and effectiveness of the proposed system in affective classification of facial images in news reports. Facial expression shows high consistency with the affective textual content in news reports for positive emotion, while only low correlation has been observed for neutral and negative. The system can be directly used for applications, such as assisting editors in choosing photos with a proper affective semantic for a certain topic during news report preparation.