863 resultados para excess post-exercise oxygen consumption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical activity is recommended to facilitate weight management. However, some individuals may be unable to successfully manage their weight due to certain psychological and cognitive factors that trigger them to compensate for calories expended in exercise. The primary purpose of this study was to evaluate the effect of moderate-intensity exercise on lunch and 12-hour post-exercise energy intake (PE-EI) in normal weight and overweight sedentary males. Perceived hunger, mood, carbohydrate intake from beverages, and accuracy in estimating energy intake (EI) and energy expenditure (EE) were also assessed. The study consisted of two conditions, exercise (treadmill walking) and rest (sitting), with each participant completing each condition, in a counterbalanced-crossover design on two days. Eighty males, mean age 30 years (SD=8) were categorized into five groups according to weight (normal-/overweight), dietary restraint level (high/low), and dieting status (yes/no). Results of repeated measures, 5x2 ANOVA indicated that the main effects of condition and group, and the interaction were not significant for lunch or 12-hour PE-EI. Among overweight participants, dieters consumed significantly (p<0.05) fewer calories than non-dieters at lunch (M=822 vs. M=1149) and over 12 hours (M=1858 vs. M =2497). Overall, participants’ estimated exercise EE was significantly (p<0.01) higher than actual exercise EE, and estimated resting EE was significantly (p<0.001) lower than actual resting EE. Participants significantly (p<0.001) underestimated EI at lunch on both experimental days. Perceived hunger was significantly (p<0.05) lower after exercise (M=49 mm, SEM=3) than after rest (M=57 mm, SEM=3). Mood scores and carbohydrate intake from beverages were not influenced by weight, dietary restraint, and dieting status. In conclusion, a single bout of moderate-intensity exercise did not influence PE-EI in sedentary males in reference to weight, dietary restraint, and dieting status, suggesting that this population may not be at risk for overeating in response to exercise. Therefore, exercise can be prescribed and used as an effective tool for weight management. Results also indicated that there was an inability to accurately estimate EI (ad libitum lunch meal) and EE (60 minutes of moderate-intensity exercise). Inaccuracies in the estimation of calories for EI and EE could have the potential to unfavorably impact weight management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the impact of an acute bout of physical activity on postexercise energy intake (PE-EI) in overweight females who were dieting with high restraint (D-HR) and non-dieting with either high restraint (ND-HR) or low restraint (ND-LR). PE-EI at lunch and 12-hours after was compared on the exercise (E) and a nonexercise (NE) day. There was a significant interaction (F (2,33)= 4.12, p = 0.025) of dieting/restraint status and condition (E vs. NE day) on the 12-hour El. The D-HR ate 519 ± 596 kcal more on the E than on the NE day; while the ND-HR ate 177 ± 392 kcal less on the E than on the NE day. The results of this study demonstrate that the impact of exercise on PE-EI is determined by both a physiological and psychological response. Dieting status, dietary restraint, level of disinhibition and cognitive factors may influence PE-EI and weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary purpose of this study was to evaluate the effects of a single bout of moderate-intensity exercise on acute (ad libitum lunch) post-exercise energy intake (PE-EI) and 12-hour energy intake in normal-weight and overweight sedentary males. Accuracy in estimating energy intake (EI) and energy expenditure (EE), solid vs. liquid carbohydrate intake, mood, and perceived hunger were also assessed. The study consisted of two conditions, exercise and rest, with each subject participating in each condition, in a counterbalanced-crossover design on two days. The participants were randomly assigned to either the exercise or resting (seated) control condition on the first day of the experiment, and then the condition was reversed on the second day. Exercise consisted of walking on a treadmill at moderate-intensity for 60 minutes. Eighty males, mean age 30+8 years were categorized into five groups according to weight status (overweight/normal-weight), dietary restraint status (high/low), and dieting status (yes/no). The main effects of condition and group, and the interaction were not significant for acute (lunch) or 12-hour PE-EI. Overall, participants estimated EE for exercise at 46% higher than actual exercise EE, and they estimated EE for rest by 45% lower than actual resting EE. Participants significantly underestimated EI at lunch on both the exercise and rest days by 43% and 44%, respectively. Participants with high restraint were significantly better at estimating EE on the exercise day, and better at estimating EI on the rest day. Mood, perceived hunger, and solid vs. liquid carbohydrate intake were not influenced by dietary restraint, weight, or dieting status. In conclusion, a single bout of moderate-intensity exercise did not influence PE-EI in sedentary males in reference to dietary restraint, weight, and dieting status. Results also suggested that among sedentary males, there is a general inability to accurately estimate calories for moderate-intensity physical activity and EI. Inaccurate estimates of EE and EI have the potential to influence how males manage their weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the influence of 3 consecutive days of high-intensity cycling on blood and urinary markers of oxidative stress. Eight highly-trained male cyclists (VO2 max 76 +/- 4 mL.kg-1.min-1; mean +/- SD) completed an interval session (9 exercise bouts lasting 30 s each, at 150% peak power output) on day 1, followed by 2 laboratory-simulated 30 km time trials on days 2 and 3. The cyclists also completed a submaximal exercise trial matched to the interval session for oxygen consumption. Blood was collected pre- and post-exercise for the determination of malondialdehyde (MDA), total antioxidant status (TAS), vitamin E, and the antioxidant enzyme activity of superoxide dismutase and glutathione peroxidase, while urine was collected for the determination of allantoin. There were significant increases in plasma MDA concentrations (p < 0.01), plasma TAS (p < 0.01), and urinary allantoin excretion (p < 0.01) following the high-intensity interval session on day 1, whereas plasma vitamin E concentration significantly decreased (p = 0.028). Post-exercise changes in plasma MDA (p = 0.036), TAS concentrations (p = 0.039), and urinary allantoin excretion (p = 0.031) were all significantly attenuated over the 3 consecutive days of exercise, whereas resting plasma TAS concentration was elevated. There were no significant changes in plasma MDA, TAS, or allantoin excretion following submaximal exercise and there were no significant changes in antioxidant enzyme activity over consecutive days of exercise or following submaximal exercise. Consecutive days of high-intensity exercise enhanced resting plasma TAS concentration and reduced the post-exercise increase in plasma MDA concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Most studies that use either a single exercise session, exercise training, or a cross-sectional design have failed to find a relationship between exercise and plasma lipoprotein(a) [Lp(a)] concentrations. However, a few studies investigating the effects of longer and/or more strenuous exercise have shown elevated Lp(a) concentrations, possibly as an acute-phase reactant to muscle damage. Based on the assumption that greater muscle damage would occur with exercise of longer duration, the purpose of the present study was to determine whether exercise of longer duration would increase Lp(a) concentration and creatine kinase. (CK) activity more than exercise of shorter duration. Methods Ten endurance-trained men (mean +/- SD: age, 27 +/- 6 yr; maximal oxygen consumption [(V)over dotO(2max)], 57 +/- 7 mL(.)kg(-1) min(-1)) completed two separate exercise sessions at 70% (V)over dotO(2max). One session required 900 kcal of energy expenditure (60 +/- 6 min), and the other required 1500 kcal (112 +/- 12 min). Fasted blood samples were taken immediately before (0-pre), immediately after (0-post), 1 d after (1-post), and 2 d after (2-post) each exercise session. Results CK activity increased after both exercise sessions (mean +/- SE; 800 kcal: 0-pre 55 +/- 11, 1-post 168 +/- 64 U(.)L(-1.)min(-1); 1500 kcal: 0-pre 51 +/- 5, 1-post 187 +/- 30, 2-post 123 +/- 19 U(.)L(-1.)min(-1); P < 0.05). However, median Lp(a) concentrations were not altered by either exercise session (800 kcal: 0-pre 5.0 mg(.)dL(-1), 0-post 3.2 mg(.)dL(-1), 1-post 4.0 mg(.)dL(-1), 2-post 3.4 mg(.)dL(-1); 1500 kcal: 0-pre 5.8 mg(.)dL(-1), 0-post 4.3 mg(.)dL(-1), 1-post 3.2 mg(.)dL(-1), 2-post 5.3 mg(.)dL(-1)). In addition, no relationship existed between exercise-induced changes in CK activity and Lp(a) concentration (800 kcal: r = -0.26; 1500 kcal: r = -0.02). Conclusion These results suggest that plasma Lp(a) concentration will not increase in response to minor exercise-induced muscle damage in endurance-trained runners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The Lung Cancer Exercise Training Study (LUNGEVITY) is a randomized trial to investigate the efficacy of different types of exercise training on cardiorespiratory fitness (VO2peak), patient-reported outcomes, and the organ components that govern VO2peak in post-operative non-small cell lung cancer (NSCLC) patients. METHODS/DESIGN: Using a single-center, randomized design, 160 subjects (40 patients/study arm) with histologically confirmed stage I-IIIA NSCLC following curative-intent complete surgical resection at Duke University Medical Center (DUMC) will be potentially eligible for this trial. Following baseline assessments, eligible participants will be randomly assigned to one of four conditions: (1) aerobic training alone, (2) resistance training alone, (3) the combination of aerobic and resistance training, or (4) attention-control (progressive stretching). The ultimate goal for all exercise training groups will be 3 supervised exercise sessions per week an intensity above 70% of the individually determined VO2peak for aerobic training and an intensity between 60 and 80% of one-repetition maximum for resistance training, for 30-45 minutes/session. Progressive stretching will be matched to the exercise groups in terms of program length (i.e., 16 weeks), social interaction (participants will receive one-on-one instruction), and duration (30-45 mins/session). The primary study endpoint is VO2peak. Secondary endpoints include: patient-reported outcomes (PROs) (e.g., quality of life, fatigue, depression, etc.) and organ components of the oxygen cascade (i.e., pulmonary function, cardiac function, skeletal muscle function). All endpoints will be assessed at baseline and postintervention (16 weeks). Substudies will include genetic studies regarding individual responses to an exercise stimulus, theoretical determinants of exercise adherence, examination of the psychological mediators of the exercise - PRO relationship, and exercise-induced changes in gene expression. DISCUSSION: VO2peak is becoming increasingly recognized as an outcome of major importance in NSCLC. LUNGEVITY will identify the optimal form of exercise training for NSCLC survivors as well as provide insight into the physiological mechanisms underlying this effect. Overall, this study will contribute to the establishment of clinical exercise therapy rehabilitation guidelines for patients across the entire NSCLC continuum. TRIAL REGISTRATION: NCT00018255.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Cilostazol improves walking distance in peripheral arterial disease (PAD) patients. The study objectives were to assess the effects of cilostazol on walking distance, followed by the additional assessment of cilostazol on exercise-induced ischaemiaereperfusion injury in such patients.

Methods: PAD patients were prospectively recruited to a double-blinded, placebo-controlled trial. Patients were randomised to receive either cilostazol 100 mg or placebo twice a day. The primary end-point was an improvement in walking distance. Secondary end-points included the assessment of oxygen-derived free-radical generation, antioxidant consumption and other markers of the in?ammatory cascade. Initial and absolute claudication distances (ICDs and ACDs, respectively) were measured on a treadmill. In?ammatory response was assessed before and 30 min post-exercise by measuring lipid hydroperoxide, ascorbate, atocopherol, b-carotene, P-selectin, intracellular and vascular cell-adhesion molecules (I-CAM and V-CAM), thromboxane B2 (TXB2), interleukin-6, interleukin-10, high-sensitive C-reactive protein (hsCRP), albuminecreatinine ratio (ACR) and urinary levels of p75TNF receptor. All tests were performed at baseline and 6 and 24 weeks.

Results: One hundred and six PAD patients (of whom 73 were males) were recruited and successfully randomised from December 2004 to January 2006. Patients who received cilostazol demonstrated a more signi?cant improvement in the mean percentage change from baseline in ACD (77.2% vs. 26.6% at 6 weeks, pZ0.026 and 161.7% vs. 79.0% at 24 weeks, pZ0.048) as compared to the placebo. Cilostazol reduced lipid hydroperoxide levels compared to a placebo-related increase before and after exercise (6 weeks: pre-exercise: 11.8% vs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate if chronic eccentric strength training (ST) affects heart rate (HR) and heart rate variability (HRV) during sub-maximal isometric voluntary contractions (SIVC). The training group (TG) (9 men, 62 ± 2) was submitted to ST (12 weeks, 2 days/week, 2 - 4 sets of 8-12 repetitions at 75-80% peak torque (PT). The control group (CG) (8 men, 64 ± 4) did not perform ST. The HR and the HRV (RMSSD index) were evaluated during SIVC of the knee extension (15, 30 and 40% of PT). ST increased the eccentric torque only in TG, but did not change the isometric PT and the duration of SIVC. During SIVC, the HR response pattern and the RMSSD index were similar for both groups in pre- and post-training evaluations. Although ST increased the eccentric torque in the TG, it did not generate changes in HR or HRV. © Springer-Verlag 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study aimed to determine the energy expenditure (EE) in terms of caloric cost and metabolic equivalents (METs) of two sessions of an exercise protocol. Methods: Fifteen subjects (51.0 ± 5.5years) performed the exercise sessions (80min), which were composed by (warming, walking and flexibility exercises; Session A) and (warming, walking and local muscular endurance exercises; Session B). Heart hate (HR) was measured during each part of the sessions. In laboratory environment, maximal oxygen consumption (VO2max) and oxygen uptake in rest and exercise conditions (using mean HR obtained in classes) were measured on different days, using indirect calorimetry. Exercise METs were obtained by dividing VO2 in exercise (mL.kg-1.min-1) by VO2 in rest (mL.kg-1.min-1). The EE of the exercises was calculated by the formula: MET x Weight(kg) x Time(min)/60. The results were analyzed by ANOVA with Tuckey post hoc test (p < 0.05). Results: One MET for this group was 2.7 ± 0.1mL.kg-1.min-1. The mean METs of exercises were 4,7 ± 0,8 (warming), 5,8 ± 0,9 (walking) and 3,6 ± 0,7 (flexibility) on session A, and 4,6 ± 1,2 (warming), 5,6 ± 1,0 (walking) and 4.8 ± 1,0 (local muscular endurance exercises) on Session B. The training sessions showed similar energy cost (A: 398 ± 86.72 kcal and B: 404 ± 38.85 kcal; p > 0,05). None of activities were classified into vigorous intensity (> 7 METs). There were no differences on VO2 between walking (15,6 ± 2,8 or 15,4 ± 2,6 mL.kg-1.min-1) and local muscular endurance exercises (13,2 ± 2,9 mL.kg-1.min-1), although both were higher (p > 0.05) than flexibility exercises (10.1 ± 2.2 mL.kg-1.min-1). Conclusion: The proposed protocol achieves the physical activity needed by healthy adults to improve and maintain health, by their structure, moderate intensity, duration, frequency and caloric expenditure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a nonpharmacological tool for heart failure therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0+/-102.0 ml/min before rHuEpo treatment to 2,079.8+/-120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3+/-138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0+/-130.1 ml/min before treatment to 1,793.0+/-148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0+/-111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0+/-160.7 before administration to 4,254.5+/-178.4 ml/min with rHuEpo and decreased to 4,059.0+/-161.1 ml/min with hemodilution (P=0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astronauts performing extravehicular activities (EVA) are at risk for occupational hazards due to a hypobaric environment, in particular Decompression Sickness (DCS). DCS results from nitrogen gas bubble formation in body tissues and venous blood. Denitrogenation achieved through lengthy staged decompression protocols has been the mainstay of prevention of DCS in space. Due to the greater number and duration of EVAs scheduled for construction and maintenance of the International Space Station, more efficient alternatives to accomplish missions without compromising astronaut safety are desirable. ^ This multi-center, multi-phase study (NASA-Prebreathe Reduction Protocol study, or PRP) was designed to identify a shorter denitrogenation protocol that can be implemented before an EVA, based on the combination of adynamia and exercise enhanced oxygen prebreathe. Human volunteers recruited at three sites (Texas, North Carolina and Canada) underwent three different combinations (“PRP phases”) of intense and light exercise prior to decompression in an altitude chamber. The outcome variables were detection of venous gas embolism (VGE) by precordial Doppler ultrasound, and clinical manifestations of DCS. Independent variables included age, gender, body mass index, oxygen consumption peak, peak heart rate, and PRP phase. Data analysis was performed both by pooling results from all study sites, and by examining each site separately. ^ Ten percent of the subjects developed DCS and 20% showed evidence of high grade VGE. No cases of DCS occurred in one particular PRP phase with use of the combination of dual-cycle ergometry (10 minutes at 75% of VO2 peak) plus 24 minutes of light EVA exercise (p = 0.04). No significant effects were found for the remaining independent variables on the occurrence of DCS. High grade VGE showed a strong correlation with subsequent development of DCS (sensitivity, 88.2%; specificity, 87.2%). In the presence of high grade VGE, the relative risk for DCS ranged from 7.52 to 35.0. ^ In summary, a good safety level can be achieved with exercise-enhanced oxygen denitrogenation that can be generalized to the astronaut population. Exercise is beneficial in preventing DCS if a specific schedule is followed, with an individualized VO2 prescription that provides a safety level that can then be applied to space operations. Furthermore, VGE Doppler detection is a useful clinical tool for prediction of altitude DCS. Because of the small number of high grade VGE episodes, the identification of a high probability DCS situation based on the presence of high grade VGE seems justified in astronauts. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to quantify the metabolic equivalents (METs) of resistance exercise in obese patients with type 2 diabetes (T2DM) and healthy young subjects and to evaluate whether there were differences between sessions executed at low- versus high-intensity resistance exercise. Twenty obese patients with T2DM (62.9±6.1 years) and 22 young subjects (22.6±1.9 years) performed two training sessions: one at vigorous intensity (80% of 1-repetition maximum (1RM)) and one at moderate intensity (60% of 1RM). Both groups carried out three strength exercises with a 2-day recovery between sessions. Oxygen consumption was continuously measured 15 min before, during and after each training session. Obese T2DM patients showed lower METs values compared with young healthy participants at the baseline phase (F= 2043.86; P<0.01), during training (F=1140.59; P<0.01) and in the post-exercise phase (F=1012.71; P<0.01). No effects were detected in the group x intensity analysis of covariance. In this study, at both light-moderate and vigorous resistance exercise intensities, the METs value that best represented both sessions was 3 METs for the obese elderly T2DM patients and 5 METs for young subjects.