995 resultados para equivariant path fields
Resumo:
A general expression for the Mössbauer lineshape in the presence of a radio frequency field is derived. As an example the effect of the rf field on Fe57 nuclei is discussed for a situation where the 3/2 sublevel of 14.4 keV state of Fe57 is selectively populated. At resonance, both the diagonal and non-diagonal matrix elements contribute to the correlation function. As a result, in addition to a slight rf induced distortion of the main Mössbauer line. additional transition lines are obtained. Thus the present calculation supports the experimental observations of Heiman et al.
Resumo:
We consider an obstacle scattering problem for linear Beltrami fields. A vector field is a linear Beltrami field if the curl of the field is a constant times itself. We study the obstacles that are of Neumann type, that is, the normal component of the total field vanishes on the boundary of the obstacle. We prove the unique solvability for the corresponding exterior boundary value problem, in other words, the direct obstacle scattering model. For the inverse obstacle scattering problem, we deduce the formulas that are needed to apply the singular sources method. The numerical examples are computed for the direct scattering problem and for the inverse scattering problem.
Resumo:
Townsend's first ionization coefficients have been measured in corssed electric and magnetic fields for values of B/p ranging from 0.013 TESLA. TORR-1 to 0.064 TESLA.TORR-1 and for 103 x 102¿ E/p 331 x 102 V.M-1. TORR-1 in oxygen and for 122 x 102¿ E/pÂ488 x 102 V.M-1.TORR-1 for dry air. The values of effective collision frequencies determined from the equivalent pressure (pe) concept generally increase with E/p at constant B/p and decrease with increasing B/p at constant E/p. Effective collision frequencies determined from measured sparking potentials at high values of E/p increase with decreasing E/pe. The drift velocity and mean energy of electrons in oxygen in crossed electric and magnetic fields have been derived.
Resumo:
The improvement terms in the generalised energy-momentum tensor of Callan, Coleman and Jackiw can be derived from a variational principle if the Lagrangian is generalised to describe coupling between ‘matter’ fields and a spin-2 boson field. The required Lorentz-invariant theory is a linearised version of Kibble-Sciama theory with an additional (generally-covariant) coupling term in the Lagrangian. The improved energy-momentum tensor appears as the source of the spin-2 field, if terms of second order in the coupling constant are neglected.
Resumo:
This paper presents a Dubins model based strategy to determine the optimal path of a Miniature Air Vehicle (MAV), constrained by a bounded turning rate, that would enable it to fly along a given straight line, starting from an arbitrary initial position and orientation. The method is then extended to meet the same objective in the presence of wind which has a magnitude comparable to the speed of the MAV. We use a modification of the Dubins' path method to obtain the complete optimal solution to this problem in all its generality.
Resumo:
In this paper a nonlinear control has been designed using the dynamic inversion approach for automatic landing of unmanned aerial vehicles (UAVs), along with associated path planning. This is a difficult problem because of light weight of UAVs and strong coupling between longitudinal and lateral modes. The landing maneuver of the UAV is divided into approach, glideslope and flare. In the approach UAV aligns with the centerline of the runway by heading angle correction. In glideslope and flare the UAV follows straight line and exponential curves respectively in the pitch plane with no lateral deviations. The glideslope and flare path are scheduled as a function of approach distance from runway. The trajectory parameters are calculated such that the sink rate at touchdown remains within specified bounds. It is also ensured that the transition from the glideslope to flare path is smooth by ensuring C-1 continuity at the transition. In the outer loop, the roll rate command is generated by assuring a coordinated turn in the alignment segment and by assuring zero bank angle in the glideslope and flare segments. The pitch rate command is generated from the error in altitude to control the deviations from the landing trajectory. The yaw rate command is generated from the required heading correction. In the inner loop, the aileron, elevator and rudder deflections are computed together to track the required body rate commands. Moreover, it is also ensured that the forward velocity of the UAV at the touch down remains close to a desired value by manipulating the thrust of the vehicle. A nonlinear six-DOF model, which has been developed from extensive wind-tunnel testing, is used both for control design as well as to validate it.
Resumo:
The nature of the neutral curves for the stability of a Helmholtz velocity profile in a stratified, Boussinesq fluid in the presence of a uniform magnetic field for the cases (1) an infinite fluid (2) a semi-infinite fluid with a rigid boundary is discussed.
Resumo:
An efficient measurement technique for studying the effect of transient electromagnetic fields under controlled conditions has been described. Broad-band TEM fields with a rise-time of a few nanoseconds were generated using a stripline method. Theoretical results are obtained and experimental measurements which confirm these results are described. The work will form the basis for a study of the susceptibility of digital integrated circuits and their interconnections to transient electromagnetic fields.
Resumo:
The modified local stability scheme is applied to several two-dimensional problems—blunt body flow, regular reflection of a shock and lambda shock. The resolution of the flow features obtained by the modified local stability scheme is found to be better than that achieved by the other first order schemes and almost identical to that achieved by the second order schemes incorporating artificial viscosity. The scheme is easy for coding, consumes moderate amount of computer storage and time. The scheme can be advantageously used in place of second order schemes.
Resumo:
The density of states n(E) is calculated for a bound system whose classical motion is integrable, starting from an expression in terms of the trace of the time-dependent Green function. The novel feature is the use of action-angle variables. This has the advantages that the trace operation reduces to a trivial multiplication and the dependence of n(E) on all classical closed orbits with different topologies appears naturally. The method is contrasted with another, not applicable to integrable systems except in special cases, in which quantization arises from a single closed orbit which is assumed isolated and the trace taken by the method of stationary phase.
Resumo:
The monosaccharide 2-O-sulfo-α-l-iduronic acid (IdoA2S) is one of the major components of glycosaminoglycans. The ability of molecular mechanics force fields to reproduce ring-puckering conformational equilibrium is important for the successful prediction of the free energies of interaction of these carbohydrates with proteins. Here we report unconstrained molecular dynamics simulations of IdoA2S monosaccharide that were carried out to investigate the ability of commonly used force fields to reproduce its ring conformational flexibility in aqueous solution. In particular, the distribution of ring conformer populations of IdoA2S was determined. The GROMOS96 force field with the SPC/E water potential can predict successfully the dominant skew-boat to chair conformational transition of the IdoA2S monosaccharide in aqueous solution. On the other hand, the GLYCAM06 force field with the TIP3P water potential sampled transitional conformations between the boat and chair forms. Simulations using the GROMOS96 force field showed no pseudorotational equilibrium fluctuations and hence no inter-conversion between the boat and twist boat ring conformers. Calculations of theoretical proton NMR coupling constants showed that the GROMOS96 force field can predict the skew-boat to chair conformational ratio in good agreement with the experiment, whereas GLYCAM06 shows worse agreement. The omega rotamer distribution about the C5–C6 bond was predicted by both force fields to have torsions around 10°, 190°, and 360°.
Resumo:
We present some results on multicarrier analysis of magnetotransport data, Both synthetic as well as data from narrow gap Hg0.8Cd0.2Te samples are used to demonstrate applicability of various algorithms vs. nonlinear least square fitting, Quantitative Mobility Spectrum Analysis (QMSA) and Maximum Entropy Mobility Spectrum Analysis (MEMSA). Comments are made from our experience oil these algorithms, and, on the inversion procedure from experimental R/sigma-B to S-mu specifically with least square fitting as an example. Amongst the conclusions drawn are: (i) Experimentally measured resistivity (R-xx, R-xy) should also be used instead of just the inverted conductivity (sigma(xx), sigma(xy)) to fit data to semiclassical expressions for better fits especially at higher B. (ii) High magnetic field is necessary to extract low mobility carrier parameters. (iii) Provided the error in data is not large, better estimates to carrier parameters of remaining carrier species can be obtained at any stage by subtracting highest mobility carrier contribution to sigma from the experimental data and fitting with the remaining carriers. (iv)Even in presence of high electric field, an approximate multicarrier expression can be used to guess the carrier mobilities and their variations before solving the full Boltzmann equation.
Resumo:
Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.
Resumo:
Stationary crack tip fields in bulk metallic glasses under mixed mode (I and II) loading are studied through detailed finite element simulations assuming plane strain, small scale yielding conditions. The influence of internal friction or pressure sensitivity on the plastic zones. notch deformation, stress and plastic strain fields is examined for different mode mixities. Under mixed mode loading, the notch deforms into a shape such that one part of its surface sharpens while the other part blunts. Increase in mode If component of loading dramatically enhances the normalized plastic zone size, lowers the stresses but significantly elevates the plastic strain levels near the notch tip. Higher internal friction reduces the peak tangential stress but increases the plastic strain and stretching near the blunted part of the notch. The simulated shear bands are straight and extend over a long distance ahead of the notch tip under mode II dominant loading. The possible variations of fracture toughness with mode mixity corresponding to failure by brittle micro-cracking and ductile shear banding are predicted employing two simple fracture criteria. The salient results from finite element simulations are validated by comparison with those from mixed mode (I and II) fracture experiments on a Zr-based bulk metallic glass.