971 resultados para célula nutridora
Resumo:
As bactérias desempenham um papel chave na reciclagem de energia e matéria nas teias tróficas aquáticas. No entanto, as suas pequenas dimensões, curto tempo de geração e o facto de os seus genomas constituírem uma grande porção do seu volume celular, tornam as bactérias mais suscetíveis às alterações ambientais que os organismos superiores. O aumento dos níveis de radiação UVB (280-320 nm) constitui uma ameaça particularmente importante para as comunidades bacterianas dos sistemas aquáticos, uma vez que a radiação consegue penetrar até profundidades consideráveis. No entanto, os mecanismos através dos quais a radiação causa danos nas bactérias ainda não são claros, o que impede a modelação precisa dos efeitos da radiação UV nas comunidades bacterianas naturais. O bacterioneuston habita a microcamada superficial (primeiro milímetro da coluna de água), estando naturalmente exposto a níveis de radiação UV superiores aos que o bacterioplâncton está exposto. Deste modo, a microcamada superficial pode ser vista como um nicho ecológico modelo para estudar as interações entre as bactérias e a radiação UV. Os objetivos deste trabalho foram (i) avaliar a influência do nível de exposição natural à radiação das comunidades bacterianas na sua sensibilidade à radiação UV, através da comparação das respostas fotobiológicas do bacterioneuston e bacterioplâncton; (ii) aprofundar o conhecimento acerca dos mecanismos através dos quais a radiação UV causa danos, bem como dos fatores que afetam a interação entre a radiação UV e as bactérias; e (iii) avaliar o potencial da proteína RecA, que medeia a resposta SOS das bactérias, para ser usada como marcador de danos induzidos por UV nas comunidades bacterianas. Verificou-se que o bacterioneuston é mais resistente à radiação UVB que o bacterioplâncton e recupera de modo mais eficiente dos danos induzidos por UV, particularmente em condições de escassez de nutrientes, indicando assim que o nível de exposição natural das comunidades bacterianas à radiação afeta a sua sensibilidade à radiação UV. Os resultados das análises independentes do cultivo revelaram o potencial da radiação UV para afetar a estrutura das comunidades bacterianas ao selecionar bactérias resistentes. A análise do perfil de utilização de fontes de carbono usando o sistema de Ecoplacas Biolog ® e a determinação das taxas de incorporação de leucina e timidina permitiu também verificar que a radiação UV modifica o funcionamento das comunidades bacterianas. Os resultados obtidos indicam a possibilidade do bacterioneuston conter um conjunto de estirpes resistentes a UV que, mediante as condições meteorológicas apropriadas, podem ser selecionadas aquando da exposição à radiação.
Resumo:
The ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.
Resumo:
A paradigm shift is taking place from using transplanting tissue and synthetic implants to a tissue engineering approach that aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates, guiding the growth of new tissue. The central focus of this thesis was to produce porous glass and glass-ceramic scaffolds that exhibits a bioactive and biocompatible behaviour with specific surface reactivity in synthetic physiological fluids and cell-scaffold interactions, enhanced by composition and thermal treatments applied. Understanding the sintering behaviour and the interaction between the densification and crystallization processes of glass powders was essential for assessing the ideal sintering conditions for obtaining a glass scaffolds for tissue engineering applications. Our main goal was to carry out a comprehensive study of the bioactive glass sintering, identifying the powder size and sintering variables effect, for future design of sintered glass scaffolds with competent microstructures. The developed scaffolds prepared by the salt sintering method using a 3CaO.P2O5 - SiO2 - MgO glass system, with additions of Na2O with a salt, NaCl, exhibit high porosity, interconnectivity, pore size distribution and mechanical strength suitable for bone repair applications. The replacement of 6 % MgO by Na2O in the glass network allowed to tailor the dissolution rate and bioactivity of the glass scaffolds. Regarding the biological assessment, the incorporation of sodium to the composition resulted in an inibition cell response for small periods. Nevertheless it was demonstrated that for 21 days the cells response recovered and are similar for both glass compositions. The in vitro behaviour of the glass scaffolds was tested by introducing scaffolds to simulated body fluid for 21 days. Energy-dispersive Xray spectroscopy and SEM analyses proved the existence of CaP crystals for both compositions. Crystallization forming whitlockite was observed to affect the dissolution behaviour in simulated body fluid. By performing different heat treatments, it was possible to control the bioactivity and biocompatability of the glass scaffolds by means of a controlled crystallization. To recover and tune the bioactivity of the glass-ceramic with 82 % crystalline phase, different methods have been applied including functionalization using 3- aminopropyl-triethoxysilane (APTES). The glass ceramic modified surface exhibited an accelerated crystalline hydroxyapatite layer formation upon immersion in SBF after 21 days while the as prepared glass-ceramic had no detected formation of calcium phosphate up to 5 months. A sufficient mechanical support for bone tissue regeneration that biodegrade later at a tailorable rate was achievable with the glass–ceramic scaffold. Considering the biological assessment, scaffolds demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. This study opens up new possibilities for using 3CaO.P2O5–SiO2–MgO glass to manufacture various structures, while tailoring their bioactivity by controlling the content of the crystalline phase. Additionally, the in vitro behaviour of these structures suggests the high potential of these materials to be used in the field of tissue regeneration.
Resumo:
Solid oxide fuel (SOFCs) and electrolyzer (SOECs) cells have been promoted as promising technologies for the stabilization of fuel supply and usage in future green energy systems. SOFCs are devices that produce electricity by the oxidation of hydrogen or hydrocarbon fuels with high efficiency. Conversely, SOECs can offer the reverse reaction, where synthetic fuels can be generated by the input of renewable electricity. Due to this similar but inverse nature of SOFCs and SOECs, these devices have traditionally been constructed from comparable materials. Nonetheless, several limitations have hindered the entry of SOFCs and SOECs into the marketplace. One of the most debilitating is associated with chemical interreactions between cell components that can lead to poor longevities at high working temperatures and/or depleted electrochemcial performance. Normally such interreactions are countered by the introduction of thin, purely ionic conducting, buffer layers between the electrode and electrolyte interface. The objective of this thesis is to assess if possible improvements in electrode kinetics can also be obtained by modifying the transport properties of these buffer layers by the introduction of multivalent cations. The introduction of minor electronic conductivity in the surface of the electrolyte material has previously been shown to radically enhance the electrochemically active area for oxygen exchange, reducing polarization resistance losses. Hence, the current thesis aims to extend this knowledge to tailor a bi-functional buffer layer that can prevent chemical interreaction while also enhancing electrode kinetics.The thesis selects a typical scenario of an yttria stabilized zirconia electrolyte combined with a lanthanide containing oxygen electrode. Gadolinium, terbium and praseodymium doped cerium oxide materials have been investigated as potential buffer layers. The mixed ionic electronic conducting (MIEC) properties of the doped-cerium materials have been analyzed and collated. A detailed analysis is further presented of the impact of the buffer layers on the kinetics of the oxygen electrode in SOFC and SOEC devices. Special focus is made to assess for potential links between the transport properties of the buffer layer and subsequent electrode performance. The work also evaluates the electrochemical performance of different K2NiF4 structure cathodes deposited onto a peak performing Pr doped-cerium buffer layer, the influence of buffer layer thickness and the Pr content of the ceria buffer layer. It is shown that dramatic increases in electrode performance can be obtained by the introduction of MIEC buffer layers, where the best performances are shown to be offered by buffer layers of highest ambipolar conductivity. These buffer layers are also shown to continue to offer the bifunctional role to protect from unwanted chemical interactions at the electrode/electrolyte interface.
Resumo:
Dissertação mest., Biotecnologia, Universidade do Algarve, 2010
Resumo:
Dissertação mest., Biotecnologia, Universidade do Algarve, 2008
Resumo:
Dissertação de mest., Cultura Árabe e Islâmica e o Mediterrâneo, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2007
Resumo:
Tese de dout., Ciências Biotecnológicas (Biotecnologia Vegetal), Univ. do Algarve, 2009
Resumo:
Tese de dout., Bioquímica (Biologia Celular e Molecular), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010
Resumo:
Dissertação de mest.Ciências Biomédicas. Departamento de Ciências Biomédicas e Medicina, Univ. do Algarve, 2011
Resumo:
Dissertação de mest., Engenharia Biológica, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011
Resumo:
The human genome has millions of genetics variants that can affect gene expression. These variants are known as cis-regulatory variants and are responsible for intra-species phenotypic differences and individual susceptibility to disease. One of the diseases affected by cis-regulatory variants is breast cancer. Breast cancer is one of the most common cancers, with approximately 4500 new cases each year in Portugal. Breast cancer has many genes mutated and TP53 has been shown to be relevant for this disease. TP53 is one of the most commonly mutated genes in human cancer and it is involved in cell cycle regulation and apoptosis. Previous work by Maia et al has shown that TP53 has differential allelic expression (DAE), which suggests that this gene may be under the influence of cis-regulatory variants. Also, its DAE pattern is totally altered in breast tumours with normal copy number. We hypothesized that cis-regulatory variants affecting TP53 may have a role in breast cancer development and treatment. The present work aims to identify the cis-regulatory variants playing a role in TP53 expression, using in silico, in vitro and in vivo approaches. By bioinformatic tools we have identified candidate cis-regulatory variants and predicted the possible transcription factor binding sites that they affect. By EMSA we studied DNA-protein interactions in this region of TP53. The in silico analysis allowed us to identified three candidate cis-regulatory SNPs which may affect the binding of seven transcription factors. However, the EMSA experiments have not been conclusive and we have not yet confirmed whether any of the identified SNPs are associated with gene expression control of TP53. We will carry out further experiments to validate our findings.
Resumo:
Induced pluripotent stem cells (iPSc) have great potential for applications in regenerative medicine, disease modeling and basic research. Several methods have been developed for their derivation. The original method of Takahashi and Yamanaka involved the use of retroviral vectors which result in insertional mutagenesis, presence in the genome of potential oncogenes and effects of residual transgene expression on differentiation bias of each particular iPSc line. Other methods have been developed, using different viral vectors (adenovirus and Sendai virus), transient plasmid transfection, mRNA transduction, protein transduction and use of small molecules. However, these methods suffer from low efficiencies; can be extremely labor intensive, or both. An additional method makes use of the piggybac transposon, which has the advantage of inserting its payload into the host genome and being perfectly excised upon re-expression of the transposon transposase. Briefly, a policistronic cassette expressing Oct4, Sox2, Klf4 and C-Myc flanked by piggybac terminal repeats is delivered to the cells along with a plasmid transiently expressing piggybac transposase. Once reprogramming occurs, the cells are re-transfected with transposase and subclones free of tranposon integrations screened for. The procedure is therefore very labor intensive, requiring multiple manipulations and successive rounds of cloning and screening. The original method for reprogramming with the the PiggyBac transposon was created by Woltjen et al in 2009 (schematized here) and describes a process with which it is possible to obtain insert-free iPSc. Insert-free iPSc enables the establishment of better cellular models of iPS and adds a new level of security to the use of these cells in regenerative medicine. Due to the fact that it was based on several low efficiency steps, the overall efficiency of the method is very low (<1%). Moreover, the stochastic transfection, integration, excision and the inexistence of an active way of selection leaves this method in need of extensive characterization and screening of the final clones. In this work we aime to develop a non-integrative iPSc derivation system in which integration and excision of the transgenes can be controlled by simple media manipulations, avoiding labor intensive and potentially mutagenic procedures. To reach our goal we developed a two vector system which is simultaneously delivered to original population of fibroblasts. The first vector, Remo I, carries the reprogramming cassette and GFP under the regulation of a constitutive promoter (CAG). The second vector, Eneas, carries the piggybac transposase associated with an estrogen receptor fragment (ERT2), regulated in a TET-OFF fashion, and its equivalent reverse trans-activator associated with a positive-negative selection cassette under a constitutive promoter. We tested its functionality in HEK 293T cells. The protocol is divided in two the following steps: 1) Obtaining acceptable transfection efficiency into human fibroblasts. 2) Testing the functionality of the construct 3) Determining the ideal concentration of DOX for repressing mPB-ERT2 expression 4) Determining the ideal concentration of TM for transposition into the genome 5) Determining the ideal Windows of no DOX/TM pulse for transposition into the genome 6) 3, 4 and 5) for transposition out of the genome 7) Determination of the ideal concentration of GCV for negative selection We successfully demonstrated that ENEAS behaved as expected in terms of DOX regulation of the expression of mPB-ERT2. We also demonstrated that by delivering the plasmid into 293T HEK cells and manipulating the levels of DOX and TM in the medium, we could obtain puromycin resistant lines. The number of puromycin resistant colonies obtained was significantly higher when DOX as absent, suggesting that the colonies resulted from transposition events. Presence of TM added an extra layer of regulation, albeit weaker. Our PCR analysis, while not a clean as would be desired, suggested that transposition was indeed occurring, although a background level of random integration could not be ruled out. Finally, our attempt to determine whether we could use GVC to select clones that had successfully mobilized PB out of the genome was unsuccessful. Unexpectedly, 293T HEK cells that had been transfected with ENEAS and selected for puromycin resistance were insensitive to GCV.
Resumo:
Bone morphogenetic proteins (BMPs) are multifunctional growth factors belonging to the transforming growth factor β (TGFβ) superfamily with a central role in bone formation and mineralization. BMP2, a founding member of this family, has demonstrated remarkable osteogenic properties and is clinically used to promote bone repair and fracture healing. Lack of basic data on factors regulating BMP2 expression and activity have hampered a better understanding of its role in bone formation and bone-related diseases. The objective of this work was to collect new functional data and determine spatiotemporal expression patterns in a fish system aiming towards a better understanding of BMP2 function and regulation. Transcriptional and post-transcriptional regulation of gilthead seabream BMP2 gene was inferred from luciferase reporter systems. Several bone- and cartilage-related transcription factors (e.g. RUNX3, MEF2c, SOX9 and ETS1) were found to regulate BMP2 transcription, while microRNA 20a was shown to affect stability of the BMP2 transcript and thus the mineralogenic capacity of fish bone-derived host cells. The regulation of BMP2 activity through an interaction with the matrix Gla protein (MGP) was investigated in vitro using BMP responsive elements (BRE) coupled to luciferase reporter gene. Although we demonstrated the functionality of the experimental system in a fish cell line and the activation of BMP signaling pathway by seabream BMP2, no conclusive evidence could be collected on a possible interaction beween MGP and BMP2. The evolutionary relationship among the members of BMP2/4/16 subfamily was inferred from taxonomic and phylogenetic analyses. BMP16 diverged prior to BMP2 and BMP4 and should be the result of an ancient genome duplication that occurred early in vertebrate evolution. Structural and functional data suggested that all three proteins are effectors of the BMP signaling pathway, but expression data revealed different spatiotemporal patterns in teleost fish suggesting distinct mechanisms of regulation. In this work, through the collection of novel data, we provide additional insight into the regulation, the structure and the phylogenetic relationship of BMP2 and its closely related family members.
Resumo:
Tese de doutoramento, Ciências Biomédicas, Universidade do Algarve, Departamento de Ciências Biomédicas e Medicina, 2014