954 resultados para bone marrow, stem cells, regenerativve medicine, adipose tissue, tissue engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model of study: Experimental study. Introduction: Recently, stem cell research has generated great interest due to its applicability in regenerative medicine. Bone marrow is considered the most important source of adult stem cells and the establishment of new methods towards gene expression analysis regarding stem cells has become necessary. Thus Differential Display Reverse Transcription Polymerase Chain Reaction (DDRT-PCR) may be an accessible tool to investigate small differences in the gene expression of different stem cells in distinct situations. Aim: In the present study, we investigated the exequibility of DDRT-PCR to identify differences in global gene expression of mice bone marrow cells under two conditions. Methods: First, bone marrow cells were isolated fresh and a part was cultivated during one week without medium replacement. Afterwards, both bone marrow cells (fresh and cultivated) were submitted to gene expression analyses by DDRT-PCR. Results: Initially, it was possible to observe in one week-cultured bone marrow cells, changes in morphology (oval cells to fibroblastic-like cells) and protein profile, which was seen through differences in band distribution in SDS-Page gels. Finally through gene expression analysis, we detected three bands (1300, 1000 and 225 bp) exclusively expressed in the fresh bone marrow group and two bands (400 and 300 bp) expressed specifically in the cultivated bone marrow cell group. Conclusions: In summary, the DDRT-PCR method was proved efficient towards the identification of small differences in gene expression of bone marrow cells in two defined conditions. Thus, we expect that DDRT-PCR can be fast and efficiently designed to analyze differential gene expression in several stem cell types under distinct conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to isolate, culture, and characterize mesenchymal stem cells (MSCs) from horse bone marrow (BM) using the techniques of flow cytometry, immunocytochemistry, cytogenetics, and electron microscopy. Immunophenotypic analysis revealed the presence of MSCs with high expression of the CD90 marker, lower expression of the CD44 marker, and absent expression of the CD34 marker. In assays of differentiation, the positive response to osteogenic (OST), chondrogenic (CDG), and adipogenic (ADP) differentiation signals was observed and characterized by deposition of calcium-rich extracellular matrix (OST), proteoglycans and collagen II (CDG) and intracellular deposition of fat drops (ADP). In immunocytochemical characterization, MSCs were immunopositive for CD44, vimentin, and PCNA, and they were negative for CD13. In the ultrastructural analysis of MSCs, the most outstanding characteristic was the presence of rough endoplasmic reticulum with very dilated cisterns filled with a low electrodensity material. Additionally, MSCs had normal karyotypes (2n=64) as evidenced by cytogenetic analysis, and aneuploidy in metaphase was not observed. The protocols for isolating, culturing, and characterizing equine MSCs used in this study were shown to be appropriate for the production of a cell population with a good potential for differentiation and without aneuploidy that can be used to study future cellular therapies. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies with mesenchymal stem cells (MSCs) have been developed in many species because of its ability to differentiate into other mesoderm lineages, capacity of self-regeneration, low immunogenicity, paracrine, anti-inflamatory, immunomodulatory and antiapoptotic effects which make then a promissory source to be used in therapeutic strategies. The aim of this study is to report the technique of harvest of bone marrow (BM) in the coxal tuberosity (CT) of buffaloes. For this, the animals were selected, identified and contained in a stock. Then trichotomy was performed in the region corresponding to the CT. After identifying the anatomic site it was performed antisepsis, local anesthetic block and introduction of a myelogram's needle (Lang(R)) for BM aspiration. Once the needle was firmly fixed in the CT, the mandril was removed and proceeded to BM aspiration with a syringe (20 mL) containing 1 ml of heparin at 1000 IU / mL and 1 mL of PBS. After the collection, each sample collected was manually homogenized, identified and referred to the LRACT - FMVZ / UNESP-BRAZIL for the correct processing. The anatomical site tested showed to be an alternative site of harvest of BM once provided the appropriate isolation and culture of the mononuclear fraction. Moreover, the procedure was performed without difficulty and with great security. Based on this, it can be conclude that CT is an excellent anatomical site for isolation and culture of MSCs and the proposed technique is viable and feasible to be held in buffaloes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, much attention has been devoted to the renewal of knowledge about Stem Cells and Cell Therapy in domestic species. In this sense, the present work aimed to develop a methodology for collecting, processing and cultivation of mesenchymal stem cells obtained from bone marrow of coxal tuberosity in buffaloes. The collection was performed using a Komiyashiki needle, which was introduced in the coxal tuberosity and the bone marrow aspirated into a heparinized syringe with the aid of negative pressure. Directly after collection samples were processed at the laboratory at FMVZ - UNESP. The samples took approximately 32 days to reach 80% confluence, when the first passage and differentiation was performed. To confirm the mesenchymal origin, cells were induced to differentiate into adipogenic and osteogenic lineages. Samples showed morphological changes during differentiation protocol, but not all presented production of extracellular deposits of calcium or intracellular fat droplets, observed after staining with Alizarin Red and Oil Red respectively. Compared with the material obtained from other species and processed in the same laboratory, the primary culture was longer. Therefore, more studies are needed to standardize the age of animals used and to test other inducers of cell differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 x 10(6), CELL) intravenously 3 h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-beta, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adipose tissue-derived mesenchymal stem cells (ADSC) exhibit immunosuppressive capabilities both in vitro and in vivo. Their use for therapy in the transplant field is attractive as they could render the use of immunosuppressive drugs unnecessary. The aim of this study was to investigate the effect of ADSC therapy on prolonging skin allograft survival. Animals that were treated with a single injection of donor allogeneic ADSC one day after transplantation showed an increase in donor skin graft survival by approximately one week. This improvement was associated with preserved histological morphology, an expansion of CD4(+) regulatory T cells (Treg) in draining lymph nodes, as well as heightened IL-10 expression and down-regulated IL-17 expression. In vitro, ADSC inhibit naïve CD4(+) T cell proliferation and constrain Th-1 and Th-17 polarization. In summary, infusion of ADSC one day post-transplantation dramatically increases skin allograft survival by inhibiting the Th-17 pathogenic immune response and enhancing the protective Treg immune response. Finally, these data suggest that ADSC therapy will open new opportunities for promoting drug-free allograft survival in clinical transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic islet transplantation represents a fascinating procedure that, at the moment, can be considered as alternative to standard insulin treatment or pancreas transplantation only for selected categories of patients with type 1 diabetes mellitus. Among the factors responsible for leading to poor islet engraftment, hypoxia plays an important role. Mesenchymal stem cells (MSCs) were recently used in animal models of islet transplantation not only to reduce allograft rejection, but also to promote revascularization. Currently adipose tissue represents a novel and good source of MSCs. Moreover, the capability of adipose-derived stem cells (ASCs) to improve islet graft revascularization was recently reported after hybrid transplantation in mice. Within this context, we have previously shown that hyaluronan esters of butyric and retinoic acids can significantly enhance the rescuing potential of human MSCs. Here we evaluated whether ex vivo preconditioning of human ASCs (hASCs) with a mixture of hyaluronic (HA), butyric (BU), and retinoic (RA) acids may result in optimization of graft revascularization after islet/stem cell intrahepatic cotransplantation in syngeneic diabetic rats. We demonstrated that hASCs exposed to the mixture of molecules are able to increase the secretion of vascular endothelial growth factor (VEGF), as well as the transcription of angiogenic genes, including VEGF, KDR (kinase insert domain receptor), and hepatocyte growth factor (HGF). Rats transplanted with islets cocultured with preconditioned hASCs exhibited a better glycemic control than rats transplanted with an equal volume of islets and control hASCs. Cotransplantation with preconditioned hASCs was also associated with enhanced islet revascularization in vivo, as highlighted by graft morphological analysis. The observed increase in islet graft revascularization and function suggests that our method of stem cell preconditioning may represent a novel strategy to remarkably improve the efficacy of islets-hMSCs cotransplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the regenerative potential of alternative sources of stem cells, derived from human dental pulp (hDPSCs) and amniotic fluid (hAFSCs) and, specifically, to evaluate their capability to be committed towards osteogenic and myogenic lineages, for the eventual applicability of these stem cells to translational strategies in regenerative medicine of bone and skeletal muscle tissues. The in vitro bone production by stem cells may represent a radical breakthrough in the treatment of pathologies and traumas characterized by critical bone mass defects, with no medical or surgical solution. Human DPSCs and AFSCs were seeded and pre-differentiated on different scaffolds to test their capability to subsequently reach the osteogenic differentiation in vivo, in order to recover critical size bone defects. Fibroin scaffold resulted to be the best scaffold promoting mature bone formation and defect correction when combined to both hDPSCs and hAFSCs. This study also described a culture condition that might allow human DPSCs to be used for human cell therapy in compliance with good manufacturing practices (GMPs): the use of human serum (HS) promoted the expansion and the osteogenic differentiation of hDPSCs in vitro and, furthermore, allowed pre-differentiated hDPSCs to regenerate critical size bone defects in vivo. This thesis also showed that hDPSCs and hAFSCs can be differentiated towards the myogenic lineage in vitro, either when co-cultured with murine myoblasts and when differentiated alone after DNA demethylation treatment. Interestingly, when injected into dystrophic muscles of SCID/mdx mice - animal model of Duchenne Muscular Dystrophy (DMD) - hDPSCs and hAFSCs pre-differentiated after demethylating treatment were able to regenerate the skeletal muscle tissue and, particularly, to restore dystrophin expression. These observations suggest that human DPSCs and AFSCs might be eventually applied to translational strategies, in order to enhance the repair of injured skeletal muscles in DMD patients.