980 resultados para bonding strength


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS). Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM. Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we report results of calculations based on density functional theory (BP86/TZVP) of a set of isatin-Schiff base copper(II) and related complexes, 1-12, that have shown significant pro-apoptotic activity toward diverse tumor cells. The interaction of the copper(II) cation with different ligands has been investigated at the same level of theory. The strength and character of the Cu(II)-L bonding was characterized by metal-ligand bond lengths, vibrational frequencies, binding energies, ligand deformation energies, and natural population analysis. The metal-ligand bonding situation was also characterized by using two complementary topological approaches, the quantum theory of atoms-in-molecules (QTAIM) and the electron localization function (ELF). The calculated electronic g-tensor and hyperfine coupling constants present significant agreement with the EPR experimental data. The calculated parameters pointed to complex 10 as the most stable among the isatin-Schiff base copper(II) species, in good agreement with experimental data that indicate this complex as the most reactive in the series. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this study was to compare the shear bond strength between Ni-Cr alloy specimens bonded to air-abraded Ni-Cr, bur-abraded Ni-Cr, etched ceramic and etched enamel substrates using the resin cements RelyX ARC or Enforce. Materials and methods: Ni-Cr specimens were made and sandblasted with Al2O3 airborne-particles. Disc-shaped patterns were made for each of the four experimental substrates: Ni-Cr treated with Al2O3 airborne-particles, Ni-Cr treated with diamond bur abrasion, etched enamel and etched ceramic. Results: Significant differences in shear bond strength were found between the different materials and luting agents evaluated. The Ni-Cr alloy cylinders bonded to Ni-Cr surfaces sandblasted with 50 lm Al2O3 particles and bonded with Enforce achieved the highest bond strength when compared with other substrates (28.9 MPa, p < 0.05). Bur-abraded metal discs had lowest values, regardless the cement used (2.9 and 6.9 MPa for RelyX and Enforce, respectively). Etched enamel and etched ceramic had similar shear bond strengths within cement groups and performed better when RelyX was used. Conclusions: Bonding Ni-Cr to Ni-Cr and ceramic may result in similar and higher bond strength when compared to Ni-Cr/enamel bonding. For metal/metal bonding, higher shear bond strength was achieved with resin cement Enforce, and for metal/ceramic and metal/enamel bonding, RelyX had higher results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the push-out bond strength of fiberglass resin reinforced bonded with five ionomer cements. Also, the interface between cement and dentin was inspected by means of SEM. Fifty human canines were chose after rigorous scrutiny process, endodontically treated and divided randomly into five groups (n = 3) according to cement tested: Group I – Ionoseal (VOCO), Group II – Fugi I (GC), Group III – Fugi II Improved (GC), Group IV – Rely X Luting 2 (3M ESPE), Group V – Ketac Cem (3M ESPE). The post-space was prepared to receive a fiberglass post, which was tried before cementation process. No dentin or post surface pretreatment was carried out. After post bonding, all roots were cross-sectioned to acquire 3 thin-slices (1 mm) from three specific regions of tooth (cervical, medium and apical). A Universal test machine was used to carry out the push-out test with cross-head speed set to 0.5mm/mim. All failed specimens were observed under optical microscope to identify the failure mode. Representative specimens from each group was inspected under SEM. The data were analyzed by Kolmogorov-Smirnov and Levene’s tests and by two-way ANOVA, and Tukey’s port hoc test at a significance level of 5%. It was compared the images obtained for determination of types of failures more occurred in different levels. SEM inspection displayed that all cements filled the space between post and dentin, however, some imperfections such bubles and voids were noticed in all groups in some degree of extension. The push-out bond strength showed that cement Ketac Cem presented significant higher results when compared to the Ionoseal (P = 0.02). There were no statistical significant differences among other cements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To assess the immediate influence of dentine bonding systems (DBS) associated with 2% chlorhexidine digluconate (CHX) on glass-fibre post-bond strength to root dentine, in terms of coronal, middle and apical thirds. Methodology: Sixty bovine roots were root filled and randomly assigned to 1 of 6 groups (n = 10): SBMP (3-step etch-and-rinse system, Scotchbond Multi-Purpose), SB (2-step etch-and-rinse system, Single Bond 2), SE (2-step self-etching system, Clearfil SE Bond) and SBMP-CHX, SB-CHX and SE-CHX, respectively, associated with CHX. For all groups, a glassfibre post was luted with a dual-cure resin cement, RelyX ARC. After 7-day storage, specimens were subjected to the push-out test. Failure modes were analysed under optical microscopy (40x). Bond strength values were statistically analysed by two-way ANOVA and Bonferroni tests (P < 0.05). Results: The effect of DBS was significant (P < 0.05), and SE reached higher bond strength in comparison with the other DBS tested. CHX association did not show improvement with any DBS (P > 0.05); rather, it negatively affected SE, which was detected for all thirds. There was no difference between thirds (P > 0.05), except for the SE-CHX, which presented lower values for the apical third (P < 0.05). Adhesive cement/dentine adhesive failure was predominant for all groups. CHX did not influence the failure mode for any DBS (P > 0.05). Conclusions: The performance of the dentine bonding systems was material dependent. CHX did not improve immediate bond strength; however, CHX negatively affected the bond strength of the self-etching system, especially in the third apical

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of 2% chlorhexidine digluconate (CHX) on immediate bond strength of etch-and-rinse adhesive to sound (SD) and caries-affected (CAD) primary dentin compared with permanent dentin. Flat dentin surfaces from 20 primary molars (Pri) and 20 permanent molars (Perm) were assigned to 8 experimental groups (n=5) according to tooth type (Pri or Perm), dentin condition (SD or CAD - pH-cycling for 14 days) and treatment (control - C or 60 s application of 2% CHX solution after acid etching - CHX). The bonding system (Adper Single Bond 2) was applied according to manufacturer's instructions followed by resin composite application (Filtek Z250). After 24 h water storage, specimens with cross-section area of 0.8 mm² were prepared for being tested under microtensile test (1 mm/min). Data were submitted to ANOVA and Tukey's post hoc test (α=0.05). Failure mode was evaluated using a stereomicroscope at ×400. Treatment with CHX did not result in higher bond strength values than no pre-treatment (C groups), independently of tooth type. Primary teeth and caries-affected dentin showed significantly lower (p<0.05) bond strength means compared with permanent teeth and sound dentin, respectively. Predominance of adhesive/mixed failure was observed for all groups. CHX did not influence the immediate bond strength to sound or caries-affected dentin of primary and permanent teeth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim was to compare eight types of luting agents when used to bond six indirect, laboratory restorative materials to dentin. Cylinders of the six restorative materials (Esteticor Avenir [gold alloy], Tritan [titanium], NobelRondo [feldspathic porcelain], Finesse All-Ceramic [leucite-glass ceramic], Lava [zirconia], and Sinfony [resin composite]) were ground and air-abraded. Cylinders of feldspathic porcelain and glass ceramic were additionally etched with hydrofluoric acid and were silane-treated. The cylinders were luted to ground human dentin with eight luting agents (DeTrey Zinc [zinc phosphate cement], Fuji I [conventional glass ionomer cement], Fuji Plus [resin-modified glass ionomer cement], Variolink II [conventional etch-and-rinse resin cement], Panavia F2.0 and Multilink [self-etch resin cements], and RelyX Unicem Aplicap and Maxcem [self-adhesive resin cements]). After water storage at 37°C for one week, the shear bond strength of the specimens (n=8/group) was measured, and the fracture mode was stereomicroscopically examined. Bond strength data were analyzed with two-factorial analysis of variance (ANOVA) followed by Newman-Keuls' Multiple Range Test (?=0.05). Both the restorative material and the luting agent had a significant effect on bond strength, and significant interaction was noted between the two variables. Zinc phosphate cement and glass ionomer cements produced the lowest bond strengths, whereas the highest bond strengths were found with the two self-etch and one of the self-adhesive resin cements. Generally, the fracture mode varied markedly with the restorative material. The luting agents had a bigger influence on bond strength between restorative materials and dentin than was seen with the restorative material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PM3 semiempirical quantum-mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02-0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol-' suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol-' imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high-resolution spectroscopic observations, gas electron diffraction data, and high-level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1-0.2 for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1-2 kcal mol-l. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and 0 predict that donor strength follows the order F > 0 > N and acceptor strength follows the order N > 0 > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F-H- - -N bond to be the strongest and the N-H- - -F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two-center repulsive forces brought about by the parameterization of the Gaussian core-core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum-mechanical calculations can be applied to small biologic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STATEMENT OF PROBLEM: AuTi alloys with 1.6% to 1.7% (wt%) Ti provide sufficient bond strength to veneering ceramics, but the strength of entire metal-ceramic restorations fabricated from these alloys is not known. However, this information is important to assess the clinical performance of such materials. PURPOSE: This in vitro study evaluated the fracture strength and thermal shock resistance of metal-ceramic crowns with AuTi frameworks produced by milling or casting. MATERIAL AND METHODS: Frameworks of the alloy Au-1.7Ti-0.1Ir (wt%) (Esteticor Vision) were produced by milling or casting (test groups). A high-gold alloy (Esteticor Special) was used as the control. The frameworks were veneered with ceramic (VMK 95). Specimens (n=7) were loaded until fracture. Loads at failure (N) were recorded and the mean values statistically evaluated using 1-way analysis of variance and a post hoc Dunnett test (alpha=.05). To assess the crazing resistance of the veneering ceramic, 6 additional crowns of each group were subjected to a thermal shock test. Fractured surfaces were documented by scanning electron microscopy. Coefficients of thermal expansion of the materials used were measured (n=2) to assess the thermal compatibility between alloys and ceramic. RESULTS: The mean fracture strength of the crowns with machined AuTi frameworks (1294 +/- 236 N) was significantly lower (P=.012) than that of the cast AuTi frameworks (1680 +/- 150 N), but statistically not different than the high-gold alloy (1449 +/- 159 N). Bonding failure to the AuTi alloy predominantly occurred at the alloy-oxide interface. For the high-gold alloy, more ceramic residues were observed. In the thermal shock test, crowns with milled AuTi frameworks showed significantly higher thermal shock resistance compared to the other groups. The coefficients of thermal expansion (Esteticor Vision cast: 14.5 microm/m.K; Esteticor Vision milled: 14.3 microm/m.K; Esteticor Special cast: 13.7 microm/m.K) did not correlate with the results of the thermal shock test. CONCLUSION: The in vitro fracture strength of crowns with milled AuTi frameworks is lower than that obtained with cast AuTi frameworks, but comparable to those crowns produced with a high-gold alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To assess in vitro the bond strength of a machined surface of a Au-Ti alloy to a veneering ceramic. Method and Materials: Metal strips of the alloy Au 1.7-Ti 0.1-Ir were milled from a semiproduct fabricated by continuous casting and cold forming. For comparison, the same alloy as well as a traditional Au-Pt-Pd-In alloy were used in the as-cast state. Six samples of each group were fabricated for the crack initiation test, according to ISO 9693:1999, by preparing appropriate metal strips that were veneered with ceramic using a standard firing procedure. The crack initiation test was performed in a universal testing machine. Load at fracture was recorded. Means of bond strength were calculated for each group and the results compared by use of a 1-sided Student t test (P < .05). Fracture sites were documented by means of SEM. Results: Bond strength in the 3 groups was in the same order of magnitude. Failure mode was different for both alloys. Failure of the bonding to the Au-Ti alloy predominantly occurred at the alloy-oxide interface, no matter which fabrication process was used. On the Au-Pt-Pd-In alloy, more ceramic residues were observed. Conclusion: The machined alloy Au 1.7-Ti 0.1-Ir provides sufficient bond strength to veneering ceramics, but this has to be proven by a clinical study. (Quintessence Int 2007;38:867-872).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim of the investigation was to assess the effect of different surface treatments on the bond strength of veneering ceramics to zirconia. In a shear test, the influences of polishing, sandblasting, and silica-coating of the zirconia surface on bonding were assessed with five different veneering ceramics. In addition the effect of liner application was examined. With one veneering ceramic, the impact of regeneration firing of zirconia was also evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Scheffé's test. Failure in every case occurred in the veneering ceramic adjacent to the interface with a thin layer of ceramic remaining on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. Shear strength ranged from 23.5 +/- 3.4 MPa to 33.0 +/- 6.8 MPa without explicit correlation to the respective surface treatment. Regeneration firing significantly decreased the shear strength of both polished and sandblasted surfaces. Findings of this study revealed that bonding between veneering ceramics and zirconia might be based on chemical bonds. On this note, sandblasting was not a necessary surface pretreatment to enhance bond strength and that regeneration firing was not recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The objectives of this in vitro study were (1) to assess the bond strength of the universal cement RelyX Unicem to dentin and to compare it with three conventional resin cements, (2) to test the influence of aging on their bonding capacity and (3) to test the influence of the operator on bonding quality by performing the same test in two different centers. METHODS: 160 third molars, divided into 80 for tests at the University of Zurich (Z) and 80 for tests at the University of Berne (B), were assigned to 2 x 8 subgroups of 10 teeth each. The specimens were prepared with the corresponding bonding agents and acrylic rods were luted either with RelyX Unicem (U), RelyX ARC (A), Multilink (M) or Panavia 21 (P). All specimens were stored in water for 24h (W) and half of the specimens were subjected to 1500 cycles of thermocycling (5 degrees C and 55 degrees C) (T). Bond strength was measured by means of a shear test. RESULTS: After water storage RelyX Unicem exhibited lowest bond strength (UWZ: 9.2+/-1.6 MPa, UWB: 9.9+/-1.2 MPa, AWZ: 15.3+/-6.0 MPa, AWB: 12.2+/-4.3 MPa, MWZ: 15.6+/-3.3 MPa, MWB: 12.4 MPa+/-2.4, PWZ: 13.4+/-2.9 MPa, PWB: 14.9+/-2.6 MPa). Thermocycling affected the bonding performance of all four cements. However, bond strength of RelyX Unicem was least influenced by thermocycling (UTZ: 9.4+/-2.9 MPa, UTB: 8.6+/-1.3 MPa, ATZ: 11.4+/-6.3 MPa, ATB: 13.3+/-3.7 MPa, MTZ: 15.4+/-3.1 MPa, MTB: 10.3+/-2.4 MPa, PTZ: 11.1+/-2.8 MPa, PTB: 11.3+/-2.8 MPa). SIGNIFICANCE: Although the bond strength of RelyX Unicem to dentin was lower in comparison to RelyX ARC, Multilink and Panavia 21, its bond strength was less sensitive to variations in handling and aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to evaluate the bonding of glass ionomer cements (GICs) to sound and caries-affected dentin by microtensile bond strength (μTBS) and nanoleakage (NL) tests. METHODS Occlusal cavity preparations were made in 36 sound primary molars. Half of the specimens were submitted to a pH-cycling model to create simulated caries-affected dentin. Teeth were randomly restored with one of the three materials: (1) resin-modified GIC with nanoparticles (Ketac N100; KN); (2) resin-modified GIC (Vitremer; VI); and (3) high-viscosity GIC (Ketac Molar Easy Mix; KM). Specimens were tested using a microtensile test (1 mm/minute). One specimen from each tooth was immersed in ammoniacal silver nitrate for 24 hours and revealed after eight hours to assess interfacial NL. The μTBS means were analyzed by 2-way analysis of variance and Tukey's post hoc test. For NL, Kruskal-Wallis and Mann-Whitney tests were used (P<.05). RESULTS No difference was found between sound and caries-affected dentin (P>.05). KM showed the lowest GIC-dentin μTBS values, while VI and KN showed higher values. Infiltration of ammoniacal silver nitrate into the adhesive interface was not affected by sound or caries-affected dentin. CONCLUSION Caries-affected dentin does not jeopardize the bonding of glass ionomer cements to primary tooth dentin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To evaluate the bonding of simplified adhesive systems to sound and caries-affected dentin of primary teeth with microtensile (µTBS) and nanoleakage (NL) tests. MATERIALS AND METHODS Occlusal cavities were prepared in 36 sound second primary molars. Half of the specimens were submitted to pH cycling to simulate caries-affected dentin. Teeth were randomly restored with one of three materials: the etch-and-rinse adhesive system Adper Single Bond 2 (SB), the two-step self-etching adhesive system Adper SE Plus (SE), and the one-step self-etching adhesive system Adper Easy One (EASY). After storage for 24 h, specimens with cross-sectional areas of 0.8 mm2 were prepared for microtensile testing (1 mm/min). One stick from each tooth was immersed in silver nitrate solution (24 h) and allowed to develop for 8 h in order to score the nano leakage with SEM. The fracture pattern was evaluated using a stereomicroscope (400X). The µTBS means were analyzed by two-way ANOVA and Tukey's post-hoc test. For NL, the Kruskal- Wallis and Mann-Whitney tests were used (α < 0.05). RESULTS SB (35.5 ± 3.5) showed the highest µTBS value to sound dentin, followed by EASY (26.3 ± 1.9) and SE (18.2 ± 6.5) (p < 0.05). No difference among materials was observed for caries-affected dentin (SB: 17.8 ± 4.2; SE: 13.9 ± 3.2; EASY: 14.4 ± 4.2, p > 0.05). For all groups, adhesive/mixed fracture prevailed. Caries affected dentin promoted silver nitrate uptake into the adhesive interface; however, with SE, the nano leakage was more pronounced than in the other adhesive systems, even in sound dentin. CONCLUSION Caries-affected dentin negatively influences the bond strength and nano leakage of the two-step etch-and-rinse and one-step self-etching adhesive systems tested in primary teeth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Citation only