911 resultados para biomimetic inspiration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tooth loss is a common result of a variety of oral diseases due to physiological causes, trauma, genetic disorders, and aging and can lead to physical and mental suffering that markedly lowers the individual’s quality of life. Tooth is a complex organ that is composed of mineralized tissues and soft connective tissues. Dentin is the most voluminous tissue of the tooth and its formation (dentinogenesis) is a highly regulated process displaying several similarities with osteogenesis. In this study, gelatin, thermally denatured collagen, was used as a promising low-cost material to develop scaffolds for hard tissue engineering. We synthetized dentin-like scaffolds using gelatin biomineralized with magnesium-doped hydroxyapatite and blended it with alginate. With a controlled freeze-drying process and alginate cross-linking, it is possible to obtain scaffolds with microscopic aligned channels suitable for tissue engineering. 3D cell culture with mesenchymal stem cells showed the promising properties of the new scaffolds for tooth regeneration. In detail, the chemical–physical features of the scaffolds, mimicking those of natural tissue, facilitate the cell adhesion, and the porosity is suitable for long-term cell colonization and fine cell–material interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial immune systems (AISs) to date have generally been inspired by naive biological metaphors. This has limited the effectiveness of these systems. In this position paper two ways in which AISs could be made more biologically realistic are discussed. We propose that AISs should draw their inspiration from organisms which possess only innate immune systems, and that AISs should employ systemic models of the immune system to structure their overall design. An outline of plant and invertebrate immune systems is presented, and a number of contemporary systemic models are reviewed. The implications for interdisciplinary research that more biologically-realistic AISs could have is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystalline lens allows the eye to focus on near and far objects. During the aging process, it loses its ability to focus and often becomes cloudy during cataract formation. At this point, traditional medical therapy replaces the lens with an artificial replacement lens. Although replacement lenses for the crystalline lens have been implanted since 1949 for cataract surgery, none of the FDA-approved lenses mimic the anatomy of the natural lens. Hence, they are not able to focus in a manner similar to the youthful lens. Instead, they function in a manner similar to the aged lens and only provide vision at a single distance or at a very limited range of focal distances. Patients with the newest implants are often obliged to use reading glasses when using near vision, or suffer from optical aberrations, halos, or glare. Therefore, there is a need to provide youthful vision after lens surgery in terms of focusing ability, accurate optical power, and sharp focus without distortion or optical aberrations.

This thesis presents an approach to restoring youthful vision after lens replacement. An intraocular lens (IOL) that can provide accurate visual acuity along with focusing ability is proposed. This IOL relies on the natural anatomy and physiology of the eye, and therefore is actuated in a manner identical to the natural lens. In addition, the lens has the capability for adjustment during or after implantation to provide high-acuity vision throughout life.

The natural anatomy and physiology of the eye is described, along with lens replacement surgery. A lens design is proposed to address the unmet need of lens-replacement patients. Specific care in the design is made for small surgical incisions, high visual acuity, adjustable acuity over years, and the ability to focus similar to the natural lens. Methods to test the IOL using human donor tissue are developed based upon prior experiments on the ex vivo natural lens. These tools are used to demonstrate efficacy of the newly developed accommodating intraocular lens.

To further demonstrate implant feasibility, materials and processes for building the lens are evaluated for biocompatibility, endurance, repeatable manufacture, and stability. The lens biomechanics are determined after developing an artificial anatomy testing setup inspired by the natural anatomy of the human focusing mechanism. Finally, based upon a mechanical and optical knowledge of the lens, several improved lens concepts are proposed and demonstrated for efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this research was to perform an in vitro assessment of the ability of microscale topography to alter cell behaviour, with specific regard to producing favourable topography in an orthopaedic ceramic material suitable for implantation in the treatment of arthritis. Topography at microscale and nanoscale alters the bioactivity of the material. This has been used in orthopaedics for some time as seen with optimal pore size in uncemented hip and knee implants. This level of topography involves scale in hundreds of micrometres and allows for the ingrowth of tissue. Topography at smaller scale is possible thanks to progressive miniaturisation of technology. A topographic feature was created in a readily available clinically licensed polymer, Polycaprolcatone (PCL). The effect of this topography was assessed in vitro. The same topography was transferred to the latest generation composite orthopaedic ceramic, zirconia toughened alumina (ZTA). The fidelity of reproduction of the topography was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). These investigations showed more accurate reproduction of the topography in PCL than ZTA with some material artefacts in the ZTA. Cell culture in vitro was performed on the patterned substrates. The response of osteoprogenitor cells was assessed using immunohistochemistry, real-time polymerase chain reaction and alizarin staining. These results showed a small effect on cell behaviour. Finally metabolic comparison was made of the effects created by the two different materials and the topography in each. The results have shown a reproducible topography in orthopaedic ceramics. This topography has demonstrated a positive osteogenic effect in both polycaprolactone and zirconia toughened alumina across multiple assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preliminary objective of this work was to study how the effect of different crosslinking methodologies can functionally modify various characteristics of biological macromolecules relevant for scaffold development in bone tissue engineering. The research study was classified and studied in three different phases: (i) different crosslinking strategies in gelatin functionalization, (ii) ribose mediated crosslinking in collagen-hydroxyapatite scaffold (iii) different crosslinking mechanisms in functional modification of bone-like scaffold. The obtained results were highly positive in all the three investigated studies. Though the core aim of this research was to explore the available crosslinking strategies in different biological macromolecules, the present study generated significant findings, largely contributing to provide optimum solutions in understanding how the crosslinking density can fine-tune the overall performance of a scaffold, relevant for its functioning in vivo. In particular, this study demonstrated that different crosslinkers at different conditions (pH and temperature) can modify the functional properties of the scaffolds differently, therefore this optimization strategies on these crosslinkers as obtained from this study results will help material scientists in the design and development of bioactive hybrid biomaterials for hard tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing ecological awareness of Ocean Sprawl impacts is promoting the adoption of eco-engineering strategies to enhance the ecological performance of coastal infrastructures. Biomimicry, as an eco-engineering tool, aims to design infrastructure more suitable for wildlife by manipulating structural factors to mimic natural habitats. However, little is known about the extent to which natural and artificial substrates differ in their structure and to what extent such differences affect the biota. To fill these knowledge gaps and consequently design biomimetic surfaces, I initially explored how much physical structure diverges between various types of natural and artificial substrates and tested to what extent differences in physical structure and material composition affect the epibenthic communities. By mean of an in-field mensurative experiment and a systematic review coupled with a meta-analysis, I found that, although communities tended to differ between natural and artificial coastal habitats, both physical structure and material composition reported an overall mild effect on epibenthic communities. However, an informed choice of building material and an appropriate combination of multiple structural manipulations can promote ecological benefits at multiple levels, from increasing the ecological performance in situ to reducing the impacts during the production process. Thus, I combined my findings in a final experiment, still in progress, where I am testing the combined role of shape, brightness and inclination of biomimetic surfaces I have designed in producing benefits at multiple levels. Overall, I suggest that biomimicry has the potential to increase the ecological value of artificial habitats especially when a wide range of aspects is simultaneously considered. Indeed, none of the structural factors, individually, can fully mimic the “natural conditions” to effectively improve the ecological performance of the artificial substrates. This emphasizes the need to include in future works a multi-level perspective to fully achieve the great potential of biomimicry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, one of the most ambitious challenges in soft robotics is the development of actuators capable to achieve performance comparable to skeletal muscles. Scientists have been working for decades, inspired by Nature, to mimic both their complex structure and their perfectly balanced features in terms of linear contraction, force-to-weight ratio, scalability and flexibility. The present Thesis, contextualized within the FET open Horizon 2020 project MAGNIFY, aims to develop a new family of innovative flexible actuators in the field of soft-robotics. For the realization of this actuator, a biomimetic approach has been chosen, drawing inspiration from skeletal muscle. Their hierarchical fibrous structure was mimicked employing the electrospinning technique, while the contraction of sarcomeres was designed employing chains of molecular machines, supramolecular systems capable of performing movements useful to execute specific tasks. The first part deals with the design and production of the basic unit of the artificial muscle, the artificial myofibril, consisting in a novel electrospun core-shell nanofiber, with elastomeric shell and electrically conductive core, coupled with a conductive coating, for the realization of which numerous strategies have been investigated. The second part deals instead with the integration of molecular machines (provided by the project partners) inside these artificial myofibrils, preceded by the study of several model molecules, aimed at simulating the presence of these molecular machines during the initial phases of the project. The last part concerns the realization of an electrospun multiscale hierarchical structure, aimed at reproducing the entire muscle morphology and fibrous organization. These research will be joined together in the near future like the pieces of a puzzle, recreating the artificial actuator most similar to biological muscle ever made, composed of millions of artificial myofibrils, electrically activated in which the nano-scale movement of molecular machines will be incrementally amplified to the macro-scale contraction of the artificial muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gliomas are one of the most frequent primary malignant brain tumors. Acquisition of stem-like features likely contributes to the malignant nature of high-grade gliomas and may be responsible for the initiation, growth, and recurrence of these tumors. In this regard, although the traditional 2D cell culture system has been widely used in cancer research, it shows limitations in maintaining the stemness properties of cancer and in mimicking the in vivo microenvironment. In order to overcome these limitations, different three-dimensional (3D) culture systems have been developed to mimic better the tumor microenvironment. Cancer cells cultured in 3D structures may represent a more reliable in vitro model due to increased cell-cell and cell-extracellular matrix (ECM) interaction. Several attempts to recreate brain cancer tissue in vitro are described in literature. However, to date, it is still unclear which main characteristics the ideal model should reproduce. The overall goal of this project was the development of a 3D in vitro model able to reproduce the brain ECM microenvironment and to recapitulate pathological condition for the study of tumor stroma interactions, tumor invasion ability, and molecular phenotype of glioma cells. We performed an in silico bioinformatic analysis using GEPIA2 Software to compare the expression level of seven matrix protein in the LGG tumors with healthy tissues. Then, we carried out a FFPE retrospective study in order to evaluate the percentage of expression of selected proteins. Thus, we developed a 3D scaffold composed by Hyaluronic Acid and Collagen IV in a ratio of 50:50. We used two astrocytoma cell lines, HTB-12 and HTB-13. In conclusion, we developed an in vitro 3D model able to reproduce the composition of brain tumor ECM, demonstrating that it is a feasible platform to investigate the interaction between tumor cells and the matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is the description of the strategies and advances in the use of MIP in the development of chemical sensors. MIP has been considered an emerging technology, which allows the synthesis of materials that can mimic some highly specific natural receptors such as antibodies and enzymes. In recent years a great number of publications have demonstrated a growth in their use as sensing phases in the construction of sensors . Thus, the MIP technology became very attractive as a promising analytical tool for the development of sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física