998 resultados para animal damage
Resumo:
Free fatty acids (FFAs) have been shown to produce alteration of heart rate variability (HRV) in healthy and diabetic individuals. Changes in HRV have been described in septic patients and in those with hyperglycemia and elevated plasma FFA levels. We studied if sepsis-induced heart damage and HRV alteration are associated with plasma FFA levels in patients. Thirty-one patients with sepsis were included. The patients were divided into two groups: survivors(n = 12) and nonsurvivors (n = 19). The following associations were investigated: (a) troponin I elevation and HRV reduction and (b) clinical evolution and HRV index, plasma troponin, and plasma FFA levels. Initial measurements of C-reactive protein and gravity Acute Physiology and Chronic Health Evaluation scores were similar in both groups. Overall, an increase in plasma troponin level was related to increased mortality risk. From the first day of study, the nonsurvivor group presented a reduced left ventricular stroke work systolic index and a reduced low frequency (LF) that is one of HRV indexes. The correlation coefficient for LF values and troponin was r(2) = 0.75 (P < 0.05). All patients presented elevated plasma FFA levels on the first day of the study (5.11 +/- 0.53 mg/mL), and this elevation was even greater in the nonsurvivor group compared with the survivors (6.88 +/- 0.13 vs. 3.85 +/- 0.48 mg/mL, respectively; P < 0.05). Cardiac damage was confirmed by measurement of plasma troponin I and histological analysis. Heart dysfunction was determined by left ventricular stroke work systolic index and HRV index in nonsurvivor patients. A relationship was found between plasma FFA levels, LFnu index, troponin levels, and histological changes. Plasma FFA levels emerged as possible cause of heart damage in sepsis.
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
BACKGROUND: Mesenchymal stem cells (MSCs) have been considered for human regenerative therapy applications, and safe culture and expansion protocols are needed especially in the context of interspecies contamination. Human platelet lysate (PL) has been proposed as animal serum substitute during in vitro MSC expansion. In this work, a simplified and efficient method to obtain autologous PL to replace animal serum in cell culture applications is described. STUDY DESIGN AND METHODS: PL obtained by freezing and centrifugation procedures was tested as medium supplement for human adipose mesenchymal stem cell (hASC) culture. Differential proliferation, immunophenotypic changes, and differentiation under PL or fetal bovine serum (FBS) were assessed. RESULTS: In contrast to 10% FBS supplementation, cell population doubling time was significantly lower when hASCs were cultured with the same concentration of PL ( PL 22.9 +/- 1.5 hr vs. FBS 106.7 +/- 6.5 hr, t test, p < 0.05). Furthermore, hASCs maintained with 2.5% PL supplementation also showed satisfactory results. Immunophenotypic analysis revealed no differences between hASCs cultivated with PL or FBS supplementation and both cultures retained the potential to differentiate into adipose cells. These results demonstrate that autologous PL obtained from the same donor can be used as animal serum substitute in hASC culture. CONCLUSIONS: Taken together, evidence is provided that platelets provided by a single donor are sufficient to obtain PL for hASC propagation for clinical-scale applications mitigating the potential untoward side effects associated with the use of animal-derived reagents.
Resumo:
Mutations in PKD1 cause the majority of cases of autosomal dominant polycystic kidney disease (ADPKD). Because polycystin 1 modulates cell proliferation, cell differentiation, and apoptosis, its lower biologic activity observed in ADPKD might influence the degree of injury after renal ischemia/reperfusion. We induced renal ischemia/reperfusion in 10- to 12-wk-old male noncystic Pkd1(+/-) and wild-type mice. Compared with wild-type mice, heterozygous mice had higher fractional excretions of sodium and potassium and higher serum creatinine after 48 h. In addition, in heterozygous mice, also cortical damage, rates of apoptosis, and inflammatory infiltration into the interstitium at time points out to 14 d after injury all increased, as well as cell proliferation at 48 h and 7 d. The mRNA and protein expression of p21 was lower in heterozygous mice than wild-type mice at 48 h. After 6 wk, we observed dilated tubules, microcysts, and increased renal fibrosis in heterozygotes. The early mortality of heterozygotes was significantly higher than that of wild-type mice when we extended the duration of ischemia from 32 to 35 min. In conclusion, ischemia/reperfusion induces a more severe injury in kidneys of Pkd1-haploin-sufficient mice, a process that apparently depends on a relative deficiency of p2l activity, tubular dilation, and microcyst formation. These data suggest the possibility that humans with ADPKD from PKD1 mutations may be at greater risk for damage from renal ischemia/reperfusion injury.
Resumo:
To develop an experimental model in rabbits to analyse the efficiency of extracorporeal shock wave therapy (ESWT) for Peyronie`s disease. We used 15 adult male rabbits divided into three equal groups. In group 1 (no penile ESWT) rabbits had three sessions of ESWT with 2000 shocks each (15 kV), but a rubber mat was placed between the shock head and rabbit to protect the penis; the rabbits were killed at 7 days after the last session of ESWT. In group 2 the rabbits had three sessions of ESWT using the same parameters, and were killed immediately after the last session to analyse the penis. In group 3 the rabbits had three sessions of ESWT as before but were killed at 7 days after the last session, and the penile tissue analysed macroscopically and histologically. The results showed clearly that the model was efficient, creating a similar situation to that when applying ESWT in the human penis. All of the rabbits in groups 2 and 3 had haematomas and diffuse petechiae after ESWT, and only four had urethral and penile bleeding. Almost all macroscopic changes disappeared after 48 h and only one rabbit in group 3 after 7 days had a haematoma on the dorsal penile surface. The histology (assessed using haematoxylin and eosin staining) of the cavernous body of the penis showed: unchanged histology in group 1; in group 2 there was a dilated and congested vascular space in the cavernous body, with interstitial extensive bleeding in the dermis; and in group 3 there was an increase in interstitial fibrous tissue in the cavernous septum, with deposition of collagen fibres and thickening of the tunica albuginea. The present model was efficient in producing tissue injury in the normal penis when treated with ESWT, suggesting that this promising model should be considered for use future studies of Peyronie`s disease.
Resumo:
The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spc(r)) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.
Resumo:
Objective: To assess the ability of a three-layer graft in the closuse of large fetal skin defects. Methods: Ovine fetuses underwent a large (4 x 3 cm) full-thickness skin defect over the lumbar region at 105 days` gestation (term = 140 days). A bilaminar artificial skin was placed over a cellulose interface to cover the defect (3-layer graft). The skin was partially reapproximated with a continuous nylon suture. Pregnancy was allowed to continue and the surgical site was submitted to histopathological analysis at different post-operative intervals. Results: Seven fetuses underwent surgery. One maternal/fetal death occurred, and the remaining 6 fetuses were analyzed. Artificial skin adherence to the wound edges was observed in cases that remained in utero for at least 15 days. Neoskin was present beneath the silicone layer of the bilaminar artificial skin. Conclusions: Our study shows that neoskin can develop in the fetus using a 3-layer graft, including epidermal growth beneath the silicone layer of the bilaminar skin graft. These findings suggest that the fetus is able to reepithelialise even large skin defects. Further experience is necessary to assess the quality of this repair.
Resumo:
The study aimed to verify the physiological injury behavior by stretching the soleus muscle of rats, using a noninvasive experimental model. Twenty-four rats were used and divided into three groups of eight animals: control group (A), group that performed tetanus followed by electrical stimulation and a sudden dorsiflexion of the left paw performed by a device equipped with a mechanism of muscle soleus rapid stretching (B); and a group that only received the tetanus (C). Three days later, the animals were killed, and the soleus muscle was resected and divided into three segments. Morphological changes indicative of muscle damage appeared in all three segments of group B. In a lesser degree, similar changes were also detected in muscles subjected to only tetanus. This model was effective; reproducing an injury similar to what occurs in human sports injuries.
Resumo:
Mucosal leishmaniasis (ML) is characterised by severe tissue destruction. Herein, we evaluated the involvement of the IL-17-type response in the inflammatory infiltrate of biopsy specimens from 17 ML patients. IL-17 and IL-17-inducing cytokines (IL-1 beta, IL-23, IL-6 and TGF-beta) were detected by immunohistochemistry in ML patients. IL-17(+) cells exhibited CD4(+), CD8(+) or CD14(+) phenotypes, and numerous IL-17(+) cells co-expressed the CC chemokine receptor 6 (CCR6). Neutrophils, a hallmark of Th17-mediated inflammation, were regularly detected in necrotic and perinecrotic areas and stained positive for neutrophil elastase, myeloperoxidase and MMP-9. Taken together, these observations demonstrate the existence of Th17 cells in ML lesions associated with neutrophils in areas of tissue injury and suggest that IL-17 is involved in ML pathogenesis.
Resumo:
The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss caused by exposure of the hearing organ to acoustic overstimulation, typically an intense sound impulse, hyperbaric oxygen therapy (HOT), which favors repair of the microcirculation, can be potentially used to treat it. Hence, this study aimed to assess the effects of HOT on guinea pigs exposed to acoustic trauma. Fifteen guinea pigs were exposed to noise in the 4-kHz range with intensity of 110 dB sound level pressure for 72 h. They were assessed by brainstem auditory evoked potential (BAEP) and by distortion product otoacoustic emission (DPOAE) before and after exposure and after HOT at 2.0 absolute atmospheres for 1 h. The cochleae were then analyzed using scanning electron microscopy (SEM). There was a statistically significant difference in the signal-to-noise ratio of the DPOAE amplitudes for the 1- to 4-kHz frequencies and the SEM findings revealed damaged outer hair cells (OHC) after exposure to noise, with recovery after HOT (p = 0.0159), which did not occur on thresholds and amplitudes to BAEP (p = 0.1593). The electrophysiological BAEP data did not demonstrate effectiveness of HOT against AAT damage. However, there was improvement of the anatomical pattern of damage detected by SEM, with a significant reduction of the number of injured cochlear OHC and their functionality detected by DPOAE.
Resumo:
We have demonstrated that phrenic nerves` large myelinated fibers in streptozotocin (STZ)-induced diabetic rats show axonal atrophy, which is reversed by insulin treatment. However, studies on structural abnormalities of the small myelinated and the unmyelinated fibers in the STZ-model of neuropathy are limited. Also, structural changes in the endoneural vasculature are not clearly described in this model and require detailed study. We have undertaken morphometric studies of the phrenic nerve in insulin-treated and untreated STZ-diabetic rats and non-diabetic control animals over a 12-week period. The presence of neuropathy was assessed by means of transmission electron microscopy, and morphometry of the unmyelinated fibers was performed. The most striking finding was the morphological evidence of small myelinated fiber neuropathy due to the STZ injection, which was not protected or reversed by conventional insulin treatment. This neuropathy was clearly associated with severe damage of the endoneural vessels present on both STZ groups, besides the insulin treatment. The STZ-diabetes model is widely used to investigate experimental diabetic neuropathies, but few studies have performed a detailed assessment of either unmyelinated fibers or capillary morphology in this animal model. The present study adds useful information for further investigations on the ultrastructural basis of nerve function in diabetes.