964 resultados para angular deformations
Resumo:
"RADC contract no. AF 30(602)-2077."
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Includes bibliographies.
Resumo:
We explore the calculation of unimolecular bound states and resonances for deep-well species at large angular momentum using a Chebychev filter diagonalization scheme incorporating doubling of the autocorrelation function as presented recently by Neumaier and Mandelshtam [Phys. Rev. Lett. 86, 5031 (2001)]. The method has been employed to compute the challenging J=20 bound and resonance states for the HO2 system. The methodology has firstly been tested for J=2 in comparison with previous calculations, and then extended to J=20 using a parallel computing strategy. The quantum J-specific unimolecular dissociation rates for HO2-> H+O-2 in the energy range from 2.114 to 2.596 eV have been reported for the first time, and comparisons with the results of Troe and co-workers [J. Chem. Phys. 113, 11019 (2000) Phys. Chem. Chem. Phys. 2, 631 (2000)] from statistical adiabatic channel method/classical trajectory calculations have been made. For most of the energies, the reported statistical adiabatic channel method/classical trajectory rate constants agree well with the average of the fluctuating quantum-mechanical rates. Near the dissociation threshold, quantum rates fluctuate more severely, but their average is still in agreement with the statistical adiabatic channel method/classical trajectory results.
Resumo:
The modified polarization spectroscopy method was applied for determination of angular momenta of autoionizing states of Pu in multistep resonance ionization processes. In comparison with the known one, our method does not require circular polarization at all, only linear polarizations are needed. This simplicity was reached using a three-dimensional excitation geometry. Angular momenta of nine new autoionizing <sup>242</sup>Pu states were determined. The method suggested could be applied for efficiency improvement in multistep RIMS applications as well as for the odd-even isotope separation for elements with a J = 0 ground state (Pu, Yb, Sm etc.).
Resumo:
A mathematical model is developed for the general pneumatic tyre. The model will permit the investigations of tyre deformations produced by arbitrary external loading, and will enable estimates to be made of the distributions of applied and reactive forces. The principle of Finite Elements is used to idealise the composite tyre structure, each element consisting of a triangle of double curvature with varying thickness. Large deflections of' the structure are accomodated by the use of an iterative sequence of small incremental steps, each of' which obeys the laws of linear mechanics. The theoretical results are found to compare favourably with the experimental test data obtained from two different types of ttye construction. However, limitations in the discretisation process has prohibited accurate assessments to be made of stress distributions in the regions of high stress gradients ..
Resumo:
* A preliminary version of this paper was presented at XI Encuentros de Geometr´ia Computacional, Santander, Spain, June 2005.
Resumo:
This paper details work carried out to verify the dimensional measurement performance of the Indoor GPS (iGPS) system; a network of Rotary-Laser Automatic Theodolites (R-LATs). Initially tests were carried out to determine the angular uncertainties on an individual R-LAT transmitter-receiver pair. A method is presented of determining the uncertainty of dimensional measurement for a three dimensional coordinate measurement machine. An experimental procedure was developed to compare three dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with the multilateration technique employed to establish three dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. The method was found to be practical and able to establish that the expanded uncertainty of the basic iGPS system was approximately 1 mm at a 95% confidence level. Further tests carried out on a highly optimized version of the iGPS system have shown that the coordinate uncertainty can be reduced to 0.25 mm at a 95% confidence level.
Resumo:
For the first time, the Z0 boson angular distribution in the center-of-momentum frame is measured in proton-proton collisions at [special characters omitted] = 7 TeV at the CERN LHC. The data sample, recorded with the CMS detector, corresponds to an integrated luminosity of approximately 36 pb–1 . Events in which there is a Z0 and at least one jet, with a jet transverse momentum threshold of 20 GeV and absolute jet rapidity less than 2.4, are selected for the analysis. Only the Z0's muon decay channel is studied. Within experimental and theoretical uncertainties, the measured angular distribution is in agreement with next-to-leading order perturbative QCD predictions.
Resumo:
The study of the angular distribution of photon plus jet events in pp collisions at [special characters omitted] = 7 TeV with the Compact Muon Solenoid (CMS) detector is presented. The photon is restricted to the central region of the detector (:η: <1.4442) while the jet is allowed to be present in both central and forward regions of CMS (:η: < 2.4). Dominant backgrounds due to jets fragmenting into neutral mesons are accounted for through the use of a template method that discriminates between signal and background. The angular distribution, :η*:, is defined as the absolute value of the difference in η between the leading photon and leading jet in an event divided by two. The angular distribution ranging from 0–1.4 was examined and compared with next-to-leading order QCD predictions and was found to be in good agreement.
Resumo:
We consider a class of initial data sets (Σ,h,K) for the Einstein constraint equations which we define to be generalized Brill (GB) data. This class of data is simply connected, U(1)²-invariant, maximal, and four-dimensional with two asymptotic ends. We study the properties of GB data and in particular the topology of Σ. The GB initial data sets have applications in geometric inequalities in general relativity. We construct a mass functional M for GB initial data sets and we show:(i) the mass of any GB data is greater than or equals M, (ii) it is a non-negative functional for a broad subclass of GB data, (iii) it evaluates to the ADM mass of reduced t − φi symmetric data set, (iv) its critical points are stationary U(1)²-invariant vacuum solutions to the Einstein equations. Then we use this mass functional and prove two geometric inequalities: (1) a positive mass theorem for subclass of GB initial data which includes Myers-Perry black holes, (2) a class of local mass-angular momenta inequalities for U(1)²-invariant black holes. Finally, we construct a one-parameter family of initial data sets which we show can be seen as small deformations of the extreme Myers- Perry black hole which preserve the horizon geometry and angular momenta but have strictly greater energy.