978 resultados para Wooden beams and girders


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we have studied the radiation effects on MOSFET electronic devices. The integrated circuits were exposed to 10 key X-ray radiation and 2.6 MeV energy proton beam. We have irradiated MOSFET devices with two different geometries: rectangular-gate transistor and circular-gate transistor. We have observed the cumulative dose provokes shifts on the threshold voltage and increases or decreases the transistor's off-state and leakage current. The position of the trapped charges in modern CMOS technology devices depends on radiation type, dose rate, total dose, applied bias and is a function of device geometry. We concluded the circular-gate transistor is more tolerant to radiation than the rectangular-gate transistor. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hadron therapy is a promising technique to treat deep-seated tumors. For an accurate treatment planning, the energy deposition in the soft and hard human tissue must be well known. Water has been usually employed as a phantom of soft tissues, but other biomaterials, such as hydroxyapatite (HAp), used as bone substitute, are also relevant as a phantom for hard tissues. The stopping power of HAp for H+ and He+ beams has been studied experimentally and theoretically. The measurements have been done using the Rutherford backscattering technique in an energy range of 450-2000 keV for H+ and of 400-5000 keV for He+ projectiles. The theoretical calculations are based in the dielectric formulation together with the MELF-GOS (Mermin Energy-Loss Function – Generalized Oscillator Strengths) method [1] to describe the target excitation spectrum. A quite good agreement between the experimental data and the theoretical results has been found. The depth dose profile of H+ and He+ ion beams in HAp has been simulated by the SEICS (Simulation of Energetic Ions and Clusters through Solids) code [2], which incorporates the electronic stopping force due to the energy loss by collisions with the target electrons, including fluctuations due to the energy-loss straggling, the multiple elastic scattering with the target nuclei, with their corresponding nuclear energy loss, and the dynamical charge-exchange processes in the projectile charge state. The energy deposition by H+ and He+ as a function of the depth are compared, at several projectile energies, for HAp and liquid water, showing important differences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deformability is often a crucial to the conception of many civil-engineering structural elements. Also, design is all the more burdensome if both long- and short-term deformability has to be considered. In this thesis, long- and short-term deformability has been studied from the material and the structural modelling point of view. Moreover, two materials have been handled: pultruded composites and concrete. A new finite element model for thin-walled beams has been introduced. As a main assumption, cross-sections rigid are considered rigid in their plane; this hypothesis replaces that of the classical beam theory of plane cross-sections in the deformed state. That also allows reducing the total number of degrees of freedom, and therefore making analysis faster compared with twodimensional finite elements. Longitudinal direction warping is left free, allowing describing phenomena such as the shear lag. The new finite-element model has been first applied to concrete thin-walled beams (such as roof high span girders or bridge girders) subject to instantaneous service loadings. Concrete in his cracked state has been considered through a smeared crack model for beams under bending. At a second stage, the FE-model has been extended to the viscoelastic field and applied to pultruded composite beams under sustained loadings. The generalized Maxwell model has been adopted. As far as materials are concerned, long-term creep tests have been carried out on pultruded specimens. Both tension and shear tests have been executed. Some specimen has been strengthened with carbon fibre plies to reduce short- and long- term deformability. Tests have been done in a climate room and specimens kept 2 years under constant load in time. As for concrete, a model for tertiary creep has been proposed. The basic idea is to couple the UMLV linear creep model with a damage model in order to describe nonlinearity. An effective strain tensor, weighting the total and the elasto-damaged strain tensors, controls damage evolution through the damage loading function. Creep strains are related to the effective stresses (defined by damage models) and so associated to the intact material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the work is to conduct a finite element model analysis on a small – size concrete beam and on a full size concrete beam internally reinforced with BFRP exposed at elevated temperatures. Experimental tests performed at Kingston University have been used to compare the results from the numerical analysis for the small – size concrete beam. Once the behavior of the small – size beam at room temperature is investigated and switching to the heating phase reinforced beams are tested at 100°C, 200°C and 300°C in loaded condition. The aim of the finite element analysis is to reflect the three – point bending test adopted into the oven during the exposure of the beam at room temperature and at elevated temperatures. Performance and deformability of reinforced beams are straightly correlated to the material properties and a wide analysis on elastic modulus and coefficient of thermal expansion is given in this work. Develop a good correlation between the numerical model and the experimental test is the main objective of the analysis on the small – size concrete beam, for both modelling the aim is also to estimate which is the deterioration of the material properties due to the heating process and the influence of different parameters on the final result. The focus of the full – size modelling which involved the last part of this work is to evaluate the effect of elevated temperatures, the material deterioration and the deflection trend on a reinforced beam characterized by a different size. A comparison between the results from different modelling has been developed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The preservation of Siberia's cultural heritage poses a serious problem. Many Siberian churches were destroyed or reconstructed, without their original form being carefully described. Mainicheva studied the question of Siberian wooden churches of the 17th-18th centuries, producing a complex analysis of their symbolism, phenomenology and morphology. Published and archival materials show that such unique churches as the Sophia Cathedral in Tobolesk (1621), the Trinity Church in Tomsk (1654) and the Church of Kazan Holy Mother in Ilimsk (1679) directly reflected the main features of medieval Russian culture combined with new perceptions of Man and the Universe. These Russian Orthodox churches have considerable significance for understanding the natural development of Russian architecture as a part of the Russian culture of permanently moving people. All these churches, which no longer exist in their original form, were built by unknown folk builders and represented a good example of non-professional architecture. Mainicheva developed full descriptions of the churches, including graphic reconstructions of their original plans and facades.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this work was the understanding of microbeam radiation therapy at the ESRF in order to find the best compromise between curing of tumors and sparing of normal tissues, to obtain a better understanding of survival curves and to report its efficiency. This method uses synchrotron-generated x-ray microbeams. Rats were implanted with 9L gliosarcomas and the tumors were diagnosed by MRI. They were irradiated 14 days after implantation by arrays of 25 microm wide microbeams in unidirectional mode, with a skin entrance dose of 625 Gy. The effect of using 200 or 100 microm center-to-center spacing between the microbeams was compared. The median survival time (post-implantation) was 40 and 67 days at 200 and 100 microm spacing, respectively. However, 72% of rats irradiated at 100 microm spacing showed abnormal clinical signs and weight patterns, whereas only 12% of rats were affected at 200 microm spacing. In parallel, histological lesions of the normal brain were found in the 100 microm series only. Although the increase in lifespan was equal to 273% and 102% for the 100 and 200 microm series, respectively, the 200 microm spacing protocol provides a better sparing of healthy tissue and may prove useful in combination with other radiation modalities or additional drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD = d(max) and comparing measurements with corresponding doses computed at d(max), B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d(max). This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index (gamma), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The gamma index was computed for a distance to agreement (DTA) of 3 mm. The dose difference deltaD was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA remain below 3% for deltaD equal or larger than 3%, while they are slightly larger for deltaD = 2% with %FA in the range from 3% to 8%. Since its introduction in routine practice, 1453 fields have been verified with GLAaS at the authors' institute (6 MV beam). Using a DTA of 3 mm and a deltaD of 4% the authors obtained %FA = 0.9 +/- 1.1 for the entire data set while, stratifying according to the dose calculation algorithm, they observed: %FA = 0.7 +/- 0.9 for fields computed with the analytical anisotropic algorithm and %FA = 2.4 +/- 1.3 for pencil-beam based fields with a statistically significant difference between the two groups. If data are stratified according to field splitting, they observed %FA = 0.8 +/- 1.0 for split fields and 1.0 +/- 1.2 for nonsplit fields without any significant difference.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers.^ For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber.^ For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent.^ The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effectiveness of the Anisotropic Analytical Algorithm (AAA) implemented in the Eclipse treatment planning system (TPS) was evaluated using theRadiologicalPhysicsCenteranthropomorphic lung phantom using both flattened and flattening-filter-free high energy beams. Radiation treatment plans were developed following the Radiation Therapy Oncology Group and theRadiologicalPhysicsCenterguidelines for lung treatment using Stereotactic Radiation Body Therapy. The tumor was covered such that at least 95% of Planning Target Volume (PTV) received 100% of the prescribed dose while ensuring that normal tissue constraints were followed as well. Calculated doses were exported from the Eclipse TPS and compared with the experimental data as measured using thermoluminescence detectors (TLD) and radiochromic films that were placed inside the phantom. The results demonstrate that the AAA superposition-convolution algorithm is able to calculate SBRT treatment plans with all clinically used photon beams in the range from 6 MV to 18 MV. The measured dose distribution showed a good agreement with the calculated distribution using clinically acceptable criteria of ±5% dose or 3mm distance to agreement. These results show that in a heterogeneous environment a 3D pencil beam superposition-convolution algorithms with Monte Carlo pre-calculated scatter kernels, such as AAA, are able to reliably calculate dose, accounting for increased lateral scattering due to the loss of electronic equilibrium in low density medium. The data for high energy plans (15 MV and 18 MV) showed very good tumor coverage in contrast to findings by other investigators for less sophisticated dose calculation algorithms, which demonstrated less than expected tumor doses and generally worse tumor coverage for high energy plans compared to 6MV plans. This demonstrates that the modern superposition-convolution AAA algorithm is a significant improvement over previous algorithms and is able to calculate doses accurately for SBRT treatment plans in the highly heterogeneous environment of the thorax for both lower (≤12 MV) and higher (greater than 12 MV) beam energies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project assessed the effectiveness of polymer gel dosimeters as tools for measuring the dose deposited by and LET of a proton beam. A total of three BANG® dosimeter formulations were evaluated: BANG®-3-Pro-2 BANGkits™ for dose measurement and two BANG®-3 variants, the LET-Baseline and LET-Meter dosimeters, for LET measurement. All dosimeters were read out using an OCT scanner. The basic characteristics of the BANGkits™ were assessed in a series of photon and electron irradiations. The dose-response relationship was found to be sigmoidal with a threshold for response of approximately 15 cGy. The active region of the dosimeter, the volume in which dosimeter response is not inhibited by oxygen, was found to make up roughly one fourth of the total dosimeter volume. Delivering a dose across multiple fractions was found to yield a greater response than delivering the same dose in a single irradiation. The dosimeter was found to accurately measure a dose distribution produced by overlapping photon fields, yielding gamma pass rates of 95.4% and 93.1% from two planar gamma analyses. Proton irradiations were performed for measurements of proton dose and LET. Initial irradiations performed through the side of a dosimeter led to OCT artifacts. Gamma pass rates of 85.7% and 89.9% were observed in two planar gamma analyses. In irradiations performed through the base of a dosimeter, gel response was found to increase with height in the dosimeter, even in areas of constant dose. After a correction was applied, gamma pass rates of 94.6% and 99.3% were observed in two planar gamma analyses. Absolute dose measurements were substantially higher (33%-100%) than the delivered doses for proton irradiations. Issues encountered while calibrating the LET-Meter gel restricted analysis of the LET measurement data to the SOBP of a proton beam. LET-Meter overresponse was found to increase linearly with track-average LET across the LET range that could be investigated (1.5 keV/micron – 3.5 keV/micron).