969 resultados para WHITE-MATTER CHANGES
Resumo:
L’utilisation de méthodes d’investigation cérébrale avancées a permis de mettre en évidence la présence d’altérations à court et à long terme à la suite d’une commotion cérébrale. Plus spécifiquement, des altérations affectant l’intégrité de la matière blanche et le métabolisme cellulaire ont récemment été révélées par l’utilisation de l’imagerie du tenseur de diffusion (DTI) et la spectroscopie par résonance magnétique (SRM), respectivement. Ces atteintes cérébrales ont été observées chez des athlètes masculins quelques jours après la blessure à la tête et demeuraient détectables lorsque les athlètes étaient à nouveau évalués six mois post-commotion. En revanche, aucune étude n’a évalué les effets neurométaboliques et microstructuraux dans la phase aigüe et chronique d’une commotion cérébrale chez les athlètes féminines, malgré le fait qu’elles présentent une susceptibilité accrue de subir ce type de blessure, ainsi qu’un nombre plus élevé de symptômes post-commotionnels et un temps de réhabilitation plus long. Ainsi, les études composant le présent ouvrage visent globalement à établir le profil d’atteintes microstructurales et neurométaboliques chez des athlètes féminines par l’utilisation du DTI et de la SRM. La première étude visait à évaluer les changements neurométaboliques au sein du corps calleux chez des joueurs et joueuses de hockey au cours d’une saison universitaire. Les athlètes ayant subi une commotion cérébrale pendant la saison ont été évalués 72 heures, 2 semaines et 2 mois après la blessure à la tête en plus des évaluations pré et post-saison. Les résultats démontrent une absence de différences entre les athlètes ayant subi une commotion cérébrale et les athlètes qui n’en ont pas subie. De plus, aucune différence entre les données pré et post-saison a été observée chez les athlètes masculins alors qu’une diminution du taux de N-acetyl aspartate (NAA) n’a été mise en évidence chez les athlètes féminines, suggérant ainsi un impact des coups d’intensité sous-clinique à la tête. La deuxième étude, qui utilisait le DTI et la SRM, a révélé des atteintes chez des athlètes féminines commotionnées asymptomatiques en moyenne 18 mois post-commotion. Plus spécifiquement, la SRM a révélé une diminution du taux de myo-inositol (mI) au sein de l’hippocampe et du cortex moteur primaire (M1) alors que le DTI a mis en évidence une augmentation de la diffusivité moyenne (DM) dans plusieurs faisceaux de matière blanche. De iii plus, une approche par région d’intérêt a mis en évidence une diminution de la fraction d’anisotropie (FA) dans la partie du corps calleux projetant vers l’aire motrice primaire. Le troisième article évaluait des athlètes ayant subi une commotion cérébrale dans les jours suivant la blessure à la tête (7-10 jours) ainsi que six mois post-commotion avec la SRM. Dans la phase aigüe, des altérations neuropsychologiques combinées à un nombre significativement plus élevé de symptômes post-commotionnels et dépressifs ont été trouvés chez les athlètes féminines commotionnées, qui se résorbaient en phase chronique. En revanche, aucune différence sur le plan neurométabolique n’a été mise en évidence entre les deux groupes dans la phase aigüe. Dans la phase chronique, les athlètes commotionnées démontraient des altérations neurométaboliques au sein du cortex préfrontal dorsolatéral (CPDL) et M1, marquées par une augmentation du taux de glutamate/glutamine (Glx). De plus, une diminution du taux de NAA entre les deux temps de mesure était présente chez les athlètes contrôles. Finalement, le quatrième article documentait les atteintes microstructurales au sein de la voie corticospinale et du corps calleux six mois suivant une commotion cérébrale. Les analyses n’ont démontré aucune différence au sein de la voie corticospinale alors que des différences ont été relevées par segmentation du corps calleux selon les projections des fibres calleuses. En effet, les athlètes commotionnées présentaient une diminution de la DM et de la diffusivité radiale (DR) au sein de la région projetant vers le cortex préfrontal, un volume moindre des fibres de matière blanche dans la région projetant vers l’aire prémotrice et l’aire motrice supplémentaire, ainsi qu’une diminution de la diffusivité axiale (DA) dans la région projetant vers l’aire pariétale et temporale. En somme, les études incluses dans le présent ouvrage ont permis d’approfondir les connaissances sur les effets métaboliques et microstructuraux des commotions cérébrales et démontrent des effets délétères persistants chez des athlètes féminines. Ces données vont de pair avec la littérature scientifique qui suggère que les commotions cérébrales n’entraînent pas seulement des symptômes temporaires.
Resumo:
Obesity is a major challenge to human health worldwide. Little is known about the brain mechanisms that are associated with overeating and obesity in humans. In this project, multimodal neuroimaging techniques were utilized to study brain neurotransmission and anatomy in obesity. Bariatric surgery was used as an experimental method for assessing whether the possible differences between obese and non-obese individuals change following the weight loss. This could indicate whether obesity-related altered neurotransmission and cerebral atrophy are recoverable or whether they represent stable individual characteristics. Morbidly obese subjects (BMI ≥ 35 kg/m2) and non-obese control subjects (mean BMI 23 kg/m2) were studied with positron emission tomography (PET) and magnetic resonance imaging (MRI). In the PET studies, focus was put on dopaminergic and opioidergic systems, both of which are crucial in the reward processing. Brain dopamine D2 receptor (D2R) availability was measured using [11C]raclopride and µ-opioid receptor (MOR) availability using [11C]carfentanil. In the MRI studies, voxel-based morphometry (VBM) of T1-weighted MRI images was used, coupled with diffusion tensor imaging (DTI). Obese subjects underwent bariatric surgery as their standard clinical treatment during the study. Preoperatively, morbidly obese subjects had significantly lower MOR availability but unaltered D2R availability in several brain regions involved in reward processing, including striatum, insula, and thalamus. Moreover, obesity disrupted the interaction between the MOR and D2R systems in ventral striatum. Bariatric surgery and concomitant weight loss normalized MOR availability in the obese, but did not influence D2R availability in any brain region. Morbidly obese subjects had also significantly lower grey and white matter densities globally in the brain, but more focal changes were located in the areas associated with inhibitory control, reward processing, and appetite. DTI revealed also signs of axonal damage in the obese in corticospinal tracts and occipito-frontal fascicles. Surgery-induced weight loss resulted in global recovery of white matter density as well as more focal recovery of grey matter density among obese subjects. Altogether these results show that the endogenous opioid system is fundamentally linked to obesity. Lowered MOR availability is likely a consequence of obesity and may mediate maintenance of excessive energy uptake. In addition, obesity has adverse effects on brain structure. Bariatric surgery however reverses MOR dysfunction and recovers cerebral atrophy. Understanding the opioidergic contribution to overeating and obesity is critical for developing new psychological or pharmacological treatments for obesity. The actual molecular mechanisms behind the positive change in structure and neurotransmitter function still remain unclear and should be addressed in the future research.
Resumo:
Since identification that mutations in NOTCH3 are responsible for cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the early 1990s, there has been extensive characterisation of the clinical and radiological features of the disease. However therapeutic interventions remain elusive, partly due to a limited understanding of the vascular pathophysiology and how it leads to the development of strokes, cognitive decline and disability. The apparent rarity and heterogenous natural history of CADASIL potentially make conducting any longitudinal or therapeutic trials difficult. The role of disease biomarkers is therefore of some interest. This thesis focuses on vascular function in CADASIL and how it may relate to clinical and radiological markers of disease. Establishing the prevalence of CADASIL in the West of Scotland was important to assess the impact of the disease, and how feasible a trial would be. A mutation prevalence of 10.7 per 100,000 was demonstrated, suggesting significant under diagnosis of the disease across much of Scotland. Cerebral hypoperfusion is thought to be important in CADASIL, and it has been shown that vascular abnormalities precede the development of brain pathology in mouse models. Investigation of vascular function in patients, both in the brain and systemically, requires less invasive measures. Arterial spin labelling magnetic resonance imaging (MRI) and transcranial Doppler ultrasound (TCD) can both be used to obtain non-invasive and quantifiable indices of vascular function. Monitoring patients with MRI whilst they receive different concentrations of inspired oxygen and carbon dioxide can provide information on brain function, and I reviewed the practicalities of this technique in order to guide the design of the studies in this thesis. 22 CADASIL patients were recruited to a longitudinal study. Testing included peripheral vascular assessment, assessment of disability, neurological dysfunction, mood and cognition. A CO2 reactivity challenge during both TCD and arterial spin labelling MRI, and detailed MRI sequences were obtained. I was able to demonstrate that vasoreactivity was associated with the number of lacunes and brain atrophy, as were carotid intima-media thickness, vessel stiffness, and age. Patients with greater disability, higher depressive symptoms and poorer processing speed showed a tendency to worse cerebral vasoreactivity but numbers were small. This observation suggests vasoreactivity may have potential as a therapeutic target, or a biomarker. I then wished to establish if arterial spin labelling MRI was useful for assessing change in cerebral blood flow in CADASIL patients. Cortical grey matter showed the highest blood flow, mean (SD), 55 (10) ml/100g/min and blood flow was significantly lower within hyperintensities (19 (4) ml/100g/min; p <0.001). Over one year, blood flow in both grey matter (mean -7 (10) %; p = 0.028) and deep white matter (-8 (13) %; p = 0.036) declined significantly. Cerebrovascular reactivity did not change over one year. I then investigated whether baseline vascular markers were able to predict change in radiological or neuropsychological measures of disease. Changes in brain volume, lacunes, microbleeds and normalised subcortical hyperintensity volume (increase of 0.8%) were shown over one year. Baseline vascular parameters were not able to predict these changes, or those in neuropsychological testing. NOTCH3 is found throughout the body and a systemic vasculopathy has been seen particularly affecting resistance vessels. Gluteal biopsies were obtained from 20 CADASIL patients, and ex vivo myography investigated the response to vasoactive agents. Evidence of impairment in both vasodilation and vasoconstriction was shown. The addition of antioxidants improved endothelium-dependent relaxation, indicating a role for oxidative stress in CADASIL pathology. Myography measures were not related to in vivo measures in the sub-group of patients who had taken part in both studies. The small vessels affected in CADASIL are unable to be imaged by conventional MR imaging so I aimed to establish which vessels might be responsible for lacunes with use of a microangiographic template overlaid onto brain images registered to a standard brain template. This showed most lacunes are small and associated with tertiary arterioles. On the basis of this thesis, it is concluded that vascular dysfunction plays an important role in the pathophysiology of CADASIL, and further assessment of vascular measures in longitudinal studies is needed. Arterial spin labelling MRI should be used as it is a reliable, non-invasive modality that can measure change over one year. Furthermore conventional cardiovascular risk factor prevention should be undertaken in CADASIL patients to delay the deleterious effects of the disease.
Resumo:
L’utilisation de méthodes d’investigation cérébrale avancées a permis de mettre en évidence la présence d’altérations à court et à long terme à la suite d’une commotion cérébrale. Plus spécifiquement, des altérations affectant l’intégrité de la matière blanche et le métabolisme cellulaire ont récemment été révélées par l’utilisation de l’imagerie du tenseur de diffusion (DTI) et la spectroscopie par résonance magnétique (SRM), respectivement. Ces atteintes cérébrales ont été observées chez des athlètes masculins quelques jours après la blessure à la tête et demeuraient détectables lorsque les athlètes étaient à nouveau évalués six mois post-commotion. En revanche, aucune étude n’a évalué les effets neurométaboliques et microstructuraux dans la phase aigüe et chronique d’une commotion cérébrale chez les athlètes féminines, malgré le fait qu’elles présentent une susceptibilité accrue de subir ce type de blessure, ainsi qu’un nombre plus élevé de symptômes post-commotionnels et un temps de réhabilitation plus long. Ainsi, les études composant le présent ouvrage visent globalement à établir le profil d’atteintes microstructurales et neurométaboliques chez des athlètes féminines par l’utilisation du DTI et de la SRM. La première étude visait à évaluer les changements neurométaboliques au sein du corps calleux chez des joueurs et joueuses de hockey au cours d’une saison universitaire. Les athlètes ayant subi une commotion cérébrale pendant la saison ont été évalués 72 heures, 2 semaines et 2 mois après la blessure à la tête en plus des évaluations pré et post-saison. Les résultats démontrent une absence de différences entre les athlètes ayant subi une commotion cérébrale et les athlètes qui n’en ont pas subie. De plus, aucune différence entre les données pré et post-saison a été observée chez les athlètes masculins alors qu’une diminution du taux de N-acetyl aspartate (NAA) n’a été mise en évidence chez les athlètes féminines, suggérant ainsi un impact des coups d’intensité sous-clinique à la tête. La deuxième étude, qui utilisait le DTI et la SRM, a révélé des atteintes chez des athlètes féminines commotionnées asymptomatiques en moyenne 18 mois post-commotion. Plus spécifiquement, la SRM a révélé une diminution du taux de myo-inositol (mI) au sein de l’hippocampe et du cortex moteur primaire (M1) alors que le DTI a mis en évidence une augmentation de la diffusivité moyenne (DM) dans plusieurs faisceaux de matière blanche. De iii plus, une approche par région d’intérêt a mis en évidence une diminution de la fraction d’anisotropie (FA) dans la partie du corps calleux projetant vers l’aire motrice primaire. Le troisième article évaluait des athlètes ayant subi une commotion cérébrale dans les jours suivant la blessure à la tête (7-10 jours) ainsi que six mois post-commotion avec la SRM. Dans la phase aigüe, des altérations neuropsychologiques combinées à un nombre significativement plus élevé de symptômes post-commotionnels et dépressifs ont été trouvés chez les athlètes féminines commotionnées, qui se résorbaient en phase chronique. En revanche, aucune différence sur le plan neurométabolique n’a été mise en évidence entre les deux groupes dans la phase aigüe. Dans la phase chronique, les athlètes commotionnées démontraient des altérations neurométaboliques au sein du cortex préfrontal dorsolatéral (CPDL) et M1, marquées par une augmentation du taux de glutamate/glutamine (Glx). De plus, une diminution du taux de NAA entre les deux temps de mesure était présente chez les athlètes contrôles. Finalement, le quatrième article documentait les atteintes microstructurales au sein de la voie corticospinale et du corps calleux six mois suivant une commotion cérébrale. Les analyses n’ont démontré aucune différence au sein de la voie corticospinale alors que des différences ont été relevées par segmentation du corps calleux selon les projections des fibres calleuses. En effet, les athlètes commotionnées présentaient une diminution de la DM et de la diffusivité radiale (DR) au sein de la région projetant vers le cortex préfrontal, un volume moindre des fibres de matière blanche dans la région projetant vers l’aire prémotrice et l’aire motrice supplémentaire, ainsi qu’une diminution de la diffusivité axiale (DA) dans la région projetant vers l’aire pariétale et temporale. En somme, les études incluses dans le présent ouvrage ont permis d’approfondir les connaissances sur les effets métaboliques et microstructuraux des commotions cérébrales et démontrent des effets délétères persistants chez des athlètes féminines. Ces données vont de pair avec la littérature scientifique qui suggère que les commotions cérébrales n’entraînent pas seulement des symptômes temporaires.
Resumo:
The aim of this study was to assess the organic matter changes in quantity and quality, particularly of the humic fraction in the surface layer (0?20 cm), of a Typic Plinthustalf soil under different management of plant mixtures used as green manure for mango (Mangifera indica L.) crops. The plant mixtures, which were seeded between rows of mango trees, were formed by two groups of leguminous and non -leguminous plants. Prior to sowing, seeds were combined in different proportions and compositions constituting the following treatments: 100% non-leguminous species (NL); 100% leguminous species (L); 75% L and 25% NL; 50% L and 50% NL; 25% L and 75% NL; and 100% spontaneous vegetation, considered a control. The plant mixtures that grew between rows of mango trees caused changes in the chemical composition of the soil organic matter, especially for the treatments 50% L and 50% NL and 25% L and 75% NL, which increased the content of humic substances in the soil organic matter. However, the treatment 25% L and 75% NL was best at minimising loss of total organic carbon from the soil. The humic acids studied have mostly aliphatic characteristics, showing large amounts of carboxylic and nitrogen groups and indicating that most of the organic carbon was formed by humic substances, with fulvic acid dominating among the alkali soluble fractions.
Resumo:
Human cytomegalovirus (HCMV) causes congenital neurological lifelong disabilities. The study analyzed 10 HCMV-infected human fetuses at 21 weeks of gestation to evaluate the characteristics and pathogenesis of brain injury related to congenital human CMV (cCMV) infection. Specifically, tissues from cortical and white matter areas, subventricular zone, thalamus, hypothalamus, hippocampus, basal ganglia and cerebellum were analysed by: i) immunohistochemistry (IHC) to detect HCMV-infected cell distribution, ii) hematoxylin-eosin staining to evaluate histological damage and iii) real-time PCR to quantify tissue viral load (HCMV-DNA). Viral tropism was assessed by double IHC to detect HCMV-antigens and neural/neuronal markers: nestin (expressed in early differentiation stage), doublecortin (DCX, identifying neuronal precursor cells) and neuronal nuclei (NeuN, identifying mature neurons). HCMV-positive cells and viral DNA were found in the brain of 8/10 (80%) fetuses. For these cases, brain damage was classified in mild (n=4, 50%), moderate (n=3, 37.5%) and severe (n=1, 12.5%) based on presence of i) diffuse astrocytosis, microglial activation and vascular changes; ii) occasional (in mild) or multiple (in moderate/severe) microglial nodules and iii) necrosis (in severe). The highest median HCMV-DNA level was found in the hippocampus (212 copies/5ng of humanDNA [hDNA], range: 10-7,505) as well as the highest mean HCMV-infected cell value (2.9 cells, range: 0-23), followed by that detected in subventricular zone (1.8 cells, range: 0-19). This suggests a preferential HCMV tropism for immature neuronal cells, residing in these regions, confirmed by the detection of DCX and nestin in 94% and 63.3% of HCMV-positive cells, respectively. NeuN was not found among HCMV-positive cells and was nearly absent in the brain with severe damage, suggesting HCMV does not infect mature neurons and immature HCMV-infected neuronal cells do not differentiate into neurons. HCMV preferential tropism in immature neural/neuronal cells delays/inhibits their differentiation interfering with brain development processes that lead to structural and functional brain defects.
Resumo:
Magnetic Resonance Imaging (MRI) is the in vivo technique most commonly employed to characterize changes in brain structures. The conventional MRI-derived morphological indices are able to capture only partial aspects of brain structural complexity. Fractal geometry and its most popular index, the fractal dimension (FD), can characterize self-similar structures including grey matter (GM) and white matter (WM). Previous literature shows the need for a definition of the so-called fractal scaling window, within which each structure manifests self-similarity. This justifies the existence of fractal properties and confirms Mandelbrot’s assertion that "fractals are not a panacea; they are not everywhere". In this work, we propose a new approach to automatically determine the fractal scaling window, computing two new fractal descriptors, i.e., the minimal and maximal fractal scales (mfs and Mfs). Our method was implemented in a software package, validated on phantoms and applied on large datasets of structural MR images. We demonstrated that the FD is a useful marker of morphological complexity changes that occurred during brain development and aging and, using ultra-high magnetic field (7T) examinations, we showed that the cerebral GM has fractal properties also below the spatial scale of 1 mm. We applied our methodology in two neurological diseases. We observed the reduction of the brain structural complexity in SCA2 patients and, using a machine learning approach, proved that the cerebral WM FD is a consistent feature in predicting cognitive decline in patients with small vessel disease and mild cognitive impairment. Finally, we showed that the FD of the WM skeletons derived from diffusion MRI provides complementary information to those obtained from the FD of the WM general structure in T1-weighted images. In conclusion, the fractal descriptors of structural brain complexity are candidate biomarkers to detect subtle morphological changes during development, aging and in neurological diseases.
Resumo:
Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.
Resumo:
Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.
Resumo:
Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.
Resumo:
Multiple sclerosis, which is the most common cause of chronic neurological disability in young adults, is an inflammatory, demyelinating, and neurodegenerative disease of the CNS, which leads to the formation of multiple foci of demyelinated lesions in the white matter. The diagnosis is based currently on magnetic resonance image and evidence of dissemination in time and space. However, this could be facilitated if biomarkers were available to rule out other disorders with similar symptoms as well as to avoid cerebrospinal fluid analysis, which requires an invasive collection. Additionally, the molecular mechanisms of the disease are not completely elucidated, especially those related to the neurodegenerative aspects of the disease. The identification of biomarker candidates and molecular mechanisms of multiple sclerosis may be approached by proteomics. In the last 10 years, proteomic techniques have been applied in different biological samples (CNS tissue, cerebrospinal fluid, and blood) from multiple sclerosis patients and in its experimental model. In this review, we summarize these data, presenting their value to the current knowledge of the disease mechanisms, as well as their importance in identifying biomarkers or treatment targets.
Resumo:
Mutations in the SPG4 gene (SPG4-HSP) are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men) with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men) underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.
Resumo:
The pathological mechanisms underlying cognitive dysfunction in multiple sclerosis (MS) are not yet fully understood and, in addition to demyelinating lesions and gray-matter atrophy, subclinical disease activity may play a role. To evaluate the contribution of asymptomatic gadolinium-enhancing lesions to cognitive dysfunction along with gray-matter damage and callosal atrophy in relapsing-remitting MS (RRMS) patients. Forty-two treated RRMS and 30 controls were evaluated. MRI (3T) variables of interest were brain white-matter and cortical lesion load, cortical and deep gray-matter volumes, corpus callosum volume and presence of gadolinium-enhancing lesions. Outcome variables included EDSS, MS Functional Composite (MSFC) subtests and the Brief Repeatable Battery of Neuropsychological tests. Cognitive dysfunction was classified as deficits in two or more cognitive subtests. Multivariate regression analyses assessed the contribution of MRI metrics to outcomes. Patients with cognitive impairment (45.2%) had more cortical lesions and lower gray-matter and callosal volumes. Patients with subclinical MRI activity (15%) had worse cognitive performance. Clinical disability on MSFC was mainly associated with putaminal atrophy. The main independent predictors for cognitive deficits were high burden of cortical lesions and number of gadolinium-enhancing lesions. Cognitive dysfunction was especially related to high burden of cortical lesions and subclinical disease activity. Cognitive studies in MS should look over subclinical disease activity as a potential contributor to cognitive impairment.
Resumo:
Cadherins are cell-to-cell adhesion molecules that play an important role in the establishment of adherent-type junctions by mediating calcium-dependent cellular interactions. The CDH1 gene encodes the transmembrane glycoprotein E-cadherin which is important in maintaining homophilic cell-cell adhesion in epithelial tissues. E-cadherin interacts with catenin proteins to maintain tissue architecture. Structural defects or loss of expression of E-cadherin have been reported as a common feature in several human cancer types. This study aimed to evaluate the expression of E-cadherin and their correlation with clinical features in microdissected brain tumor samples from 81 patients, divided into 62 astrocytic tumors grades I to IV and 19 medulloblastomas, and from 5 white matter non-neoplasic brain tissue samples. E-cadherin (CDH1) gene expression was analyzed by quantitative real-time polymerase chain reaction. Mann-Whitney, Kruskal-Wallis, Kaplan-Meir, and log-rank tests were performed for statistical analyses. We observed a decrease in expression among pathological grades of neuroepithelial tumors. Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than did neuroepithelial tumors. Expression of E-cadherin gene was higher in astrocytic than embryonal tumors (P = 0.0168). Low-grade malignancy astrocytomas (grades I-II) showed higher CDH1 expression than did high-grade malignancy astrocytomas (grades III-IV) and medulloblastomas (P < 0.0001). Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than grade I malignancy astrocytomas, considered as benign tumors (P = 0.0473). These results suggest that a decrease in E-cadherin gene expression level in high-grade neuroepithelial tumors may be a hallmark of malignancy in dedifferentiated tumors and that it may be possibly correlated with their progression and dissemination.
Resumo:
Strategies aimed at improving spinal cord regeneration after trauma are still challenging neurologists and neuroscientists throughout the world. Many cell-based therapies have been tested, with limited success in terms of functional outcome. In this study, we investigated the effects of human dental pulp cells (HDPCs) in a mouse model of compressive spinal cord injury (SCI). These cells present some advantages, such as the ease of the extraction process, and expression of trophic factors and embryonic markers from both ecto-mesenchymal and mesenchymal components. Young adult female C57/BL6 mice were subjected to laminectomy at T9 and compression of the spinal cord with a vascular clip for 1 min. The cells were transplanted 7 days or 28 days after the lesion, in order to compare the recovery when treatment is applied in a subacute or chronic phase. We performed quantitative analyses of white-matter preservation, trophic-factor expression and quantification, and ultrastructural and functional analysis. Our results for the HDPC-transplanted animals showed better white-matter preservation than the DMEM groups, higher levels of trophic-factor expression in the tissue, better tissue organization, and the presence of many axons being myelinated by either Schwann cells or oligodendrocytes, in addition to the presence of some healthy-appearing intact neurons with synapse contacts on their cell bodies. We also demonstrated that HDPCs were able to express some glial markers such as GFAP and S-100. The functional analysis also showed locomotor improvement in these animals. Based on these findings, we propose that HDPCs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.