993 resultados para Underwater light.
Resumo:
Light emitting field effect transistors (LEFETs) are emerging as a multi-functional class of optoelectronic devices. LEFETs can simultaneously execute light emission and the standard logic functions of a transistor in a single architecture. However, current LEFET architectures deliver either high brightness or high efficiency but not both concurrently, thus limiting their use in technological applications. Here we show an LEFET device strategy that simultaneously improves brightness and efficiency. The key step change in LEFET performance arises from the bottom gate top-contact device architecture in which the source/drain electrodes are semitransparent and the active channel contains a bi-layer comprising of a high mobility charge-transporting polymer, and a yellow-green emissive polymer. A record external quantum efficiency (EQE) of 2.1% at 1000cd/m2 is demonstrated for polymer based bilayer LEFETs.
Resumo:
Bottom emitting organic light emitting diodes (OLEDs) can suffer from lower external quantum efficiencies (EQE) due to inefficient out-coupling of the generated light. Herein, it is demonstrated that the current efficiency and EQE of red, yellow, and blue fluorescent single layer polymer OLEDs is significantly enhanced when a MoOx(5 nm)/Ag(10 nm)/MoOx(40 nm) stack is used as the transparent anode in a top emitting OLED structure. A maximum current efficiency and EQE of 21.2 cd/A and 6.7%, respectively, was achieved for a yellow OLED, while a blue OLED achieved a maximum of 16.5 cd/A and 10.1%, respectively. The increase in light out-coupling from the top-emitting OLEDs led to increase in efficiency by a factor of up to 2.2 relative to the optimised bottom emitting devices, which is the best out-coupling reported using solution processed polymers in a simple architecture and a significant step forward for their use in large area lighting and displays.
Resumo:
An innovative design strategy for light emitting field effect transistors (LEFETs) to harvest higher luminance and switching is presented. The strategy uses a non-planar electrode geometry in tri-layer LEFETs for simultaneous enhancement of the key parameters of quantum efficiency, brightness, switching, and mobility across the RGB color gamut.
Resumo:
Driving on an approach to a signalized intersection while distracted is relatively risky, as potential vehicular conflicts and resulting angle collisions tend to be relatively more severe compared to other locations. Given the prevalence and importance of this particular scenario, the objective of this study was to examine the decisions and actions of distracted drivers during the onset of yellow lights. Driving simulator data were obtained from a sample of 69 drivers under baseline and handheld cell phone conditions at the University of Iowa – National Advanced Driving Simulator. Explanatory variables included age, gender, cell phone use, distance to stop-line, and speed. Although there is extensive research on drivers’ responses to yellow traffic signals, the examinations have been conducted from a traditional regression-based approach, which do not necessary provide the underlying relations and patterns among the sampled data. In this paper, we exploit the benefits of both classical statistical inference and data mining techniques to identify the a priori relationships among main effects, non-linearities, and interaction effects. Results suggest that the probability of yellow light running increases with the increase in driving speed at the onset of yellow. Both young (18–25 years) and middle-aged (30–45 years) drivers reveal reduced propensity for yellow light running whilst distracted across the entire speed range, exhibiting possible risk compensation during this critical driving situation. The propensity for yellow light running for both distracted male and female older (50–60 years) drivers is significantly higher. Driver experience captured by age interacts with distraction, resulting in their combined effect having slower physiological response and being distracted particularly risky.
Resumo:
Structural fire safety has become one of the key considerations in the design and maintenance of the built infrastructure. Conventionally the fire resistance rating of load bearing Light gauge Steel Frame (LSF) walls is determined based on the standard time-temperature curve given in ISO 834. Recent research has shown that the true fire resistance of building elements exposed to building fires can be less than their fire resistance ratings determined based on standard fire tests. It is questionable whether the standard time-temperature curve truly represents the fuel loads in modern buildings. Therefore an equivalent fire severity approach has been used in the past to obtain fire resistance rating. This is based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of standard fire time-temperature curve. This paper presents the details of research undertaken to develop an energy based time equivalent approach to obtain the fire resistance ratings of LSF walls exposed to realistic design fire curves with respect to standard fire exposure. This approach relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance ratings of single and double layer plasterboard lined and externally insulated LSF walls. The predicted fire ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations exposed to both rapid and prolonged fires. The comparison shows that the proposed energy method can be used to obtain the fire resistance ratings of LSF walls in the case of prolonged fires.
Resumo:
Oxygen flux between aquatic ecosystems and the water column is a measure of ecosystem metabolism. However, the oxygen flux varies during the day in a “hysteretic” pattern: there is higher net oxygen production at a given irradiance in the morning than in the afternoon. In this study, we investigated the mechanism responsible for the hysteresis in oxygen flux by measuring the daily pattern of oxygen flux, light, and temperature in a seagrass ecosystem (Zostera muelleri in Swansea Shoals, Australia) at three depths. We hypothesised that the oxygen flux pattern could be due to diel variations in either gross primary production or respiration in response to light history or temperature. Hysteresis in oxygen flux was clearly observed at all three depths. We compared this data to mathematical models, and found that the modification of ecosystem respiration by light history is the best explanation for the hysteresis in oxygen flux. Light history-dependent respiration might be due to diel variations in seagrass respiration or the dependence of bacterial production on dissolved organic carbon exudates. Our results indicate that the daily variation in respiration rate may be as important as the daily changes of photosynthetic characteristics in determining the metabolic status of aquatic ecosystems.
Resumo:
A rapid and catalyst-free cycloaddition system for visible-light-induced click chemistry is reported. A readily accessible photoreactive 2H-azirine moiety was designed to absorb light at wavelengths above 400 nm. Irradiation with low-energy light sources thus enables efficient small-molecule synthesis with a diverse range of multiple-bond-containing compounds. Moreover, in order to demonstrate the efficiency of the current approach, quantitative ligation of the photoactivatable chromophore with functional polymeric substrates was performed and full conversion with irradiation times of only 1 min at ambient conditions was achieved. The current report thus presents a highly efficient method for applications involving selective cycloaddition to electron-deficient multiple-bond-containing materials.
Resumo:
Palladium (Pd)-catalyzed cross-coupling reactions are among the most important methods in organic synthesis. We report the discovery of highly efficient and green photocatalytic processes by which cross-coupling reactions, including Sonogashira, Stille, Hiyama, Ullmann, and Buchwald–Hartwig reactions, can be driven with visible light at temperatures slightly above room temperature using alloy nanoparticles of gold and Pd on zirconium oxide, thus achieving high yields. The alloy nanoparticles absorb visible light, and their conduction electrons gain energy, which is available at the surface Pd sites. Results of the density functional theory calculations indicate that transfer of the light excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. When the light intensity was increased, a higher reaction rate was observed, because of the increased population of photoexcited electrons. The irradiation wavelength also has an important impact on the reaction rates. Ultraviolet irradiation can drive some reactions with the chlorobenzene substrate, while visible light irradiation failed to, and substantially improve the yields of the reactions with the bromobenzene substrate. The discovery reveals the possibility of using low-energy and -density sources such as sunlight to drive chemical transformations.
Resumo:
Pt/TiO2 sensitized by the cheap and organic ortho-dihydroxyl-9,10-anthraquinone dyes, such as Alizarin and Alizarin Red, achieved a TON of approximately 10 000 (TOF > 250 h−1 for the first ten hours) during >80 hours of visible light irradiation (>420 nm) for photocatalytic hydrogen evolution when triethanolamine was used as the sacrificial donor. The stability and activity enhancements can be attributed to the two highly serviceable redox reactions involving the 9,10-dicarbonyl and ortho-dihydroxyl groups of the anthracene ring, respectively
Resumo:
Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT.
Resumo:
Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm−2) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene.
Resumo:
Visible light can drive esteri fi cation from aldehydes and alcohols using supported gold nanoparticles (Au/Al 2 O 3 ) as photo- catalysts at ambient temperatures. The gold nanoparticles (AuNPs) absorb visible light due to the localized surface plasmon resonance (LSPR) e ff ect, and the conduction electrons of the AuNPs gain the energy of the incident light. The energetic electrons, which concentrate at the NP surface, facilitate the activation of a range of aldehyde and alcohol substrates. The photocatalytic e ffi ciencies strongly depend on the Au loading, particle sizes of the AuNPs, irradiance, and wavelength of the light irradiation. Finally, a plausible reaction mechanism was proposed, and the Au/Al 2 O 3 catalysts can be reused several times without signi fi cantly losing activity. The knowledge acquired in this study may inspire further studies in new e ffi cient recyclable photocatalysts and a wide range of organic synthesis driven by sunlight.
Resumo:
We find that visible light irradiation of gold–palladium alloy nanoparticles supported on photocatalytically inert ZrO2 significantly enhances their catalytic activity for oxidant-free dehydrogenation of aromatic alcohols to the corresponding aldehydes at ambient temperatures. Dehydrogenation is also the dominant process in the selective oxidation of the alcohols to the corresponding aldehydes with molecular oxygen. The alloy nanoparticles strongly absorb light and exhibit superior catalytic and photocatalytic activity when compared to either pure palladium or gold nanoparticles. Analysis with a free electron gas model for the bulk alloy structure reveals that the alloying increases the surface charge heterogeneity on the alloy particle surface, which enhances the interaction between the alcohol molecules and the metal NPs. The increased surface charge heterogeneity of the alloy particles is confirmed with density function theory applied to small alloy clusters. Optimal catalytic activity was observed with a Au : Pd molar ratio of 1 : 186, which is in good agreement with the theoretical analysis. The rate-determining step of the dehydrogenation is hydrogen abstraction. The conduction electrons of the nanoparticles are photo-excited by the incident light giving them the necessary energy to be injected into the adsorbed alcohol molecules, promoting the hydrogen abstraction. The strong chemical adsorption of alcohol molecules facilitates this electron transfer. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive the dehydrogenation. These findings provide useful insight into the design of catalysts that utilize light for various organic syntheses at ambient temperatures.