987 resultados para Tropical tree


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The cloud forest is a special type of forest ecosystem that depends on suitable conditions of humidity and temperature to exist; hence, it is a very fragile ecosystem. The cloud forest is also one of the richest ecosystems in terms of species diversity and rate of endemism. However, today, it is one of the most threatened ecosystems in the world. Little is known about tree species distribution and coexistence among cloud forest trees. Trees are essential to understanding ecosystem functioning and maintenance because they support the ecosystem in important ways. For this dissertation, an analysis of woody plant species distribution at a small scale in a north-Peruvian Andean cloud forest was performed, and some of the factors implicated in the observed patterns were identified. Towards that end, different natural factors acting on species distribution within the forest were investigated: (i) intra-specific arrangements, (ii) heterospecific spatial relationships and (iii) relationships with external environmental factors. These analyses were conducted first on standing woody plants and then on seedlings. The woody plants were found to be clumped in the forest, either considering all the species together or each species separately. However, each species presented a specific pattern and specific spatial relationship among different-age individuals. Dispersal mode, growth form and shade tolerance played roles in the final distribution of the species. Furthermore, spatial associations among species, either positive or negative, were observed. These associations were more numerous when considering individuals of the interacting species at different developmental stages, i.e., younger individuals from one species and older individuals from another. Accordingly, competition and facilitation are asymmetric processes and vary throughout the life of an individual. Moreover, some species appear to prefer certain habitat conditions and avoid other habitats. The habitat definition that best explains species distribution is that which includes both environmental and stand characteristics; thus, a combination of these factors is necessary to understanding species' niche preferences. Seedling distribution was also associated with habitat conditions, but these conditions explained less than the 30% of the spatial variation. The position of conspecific adult individuals also affected seedling distribution; although the seedlings of many tree species avoid the vicinity of conspecifics, a few species appeared to prefer the formation of cohorts around their parent trees. The importance of habitat conditions and distance dependence with conspecifics varied among regions within the forest as well as on the developmental stage of the stand. The results from this thesis suggest that different species can coexist within a given space, forming a “puzzle” of species as a result of the intra- and interspecific spatial relationships along with niche preferences and adaptations that operate at different scales. These factors not only affect each species in a different way, but specific preferences also vary throughout species' lifespans. Resumen Resumen El bosque de niebla es uno de los ecosistemas más amenazados del mundo además de ser uno de los más frágiles. Son formaciones azonales que dependen de la existencia de unas condiciones de humedad y temperatura que permitan la formación de nubes que cubran el bosque; lo que dificulta en gran medida su conservación. También es uno de los ecosistemas con mayor riqueza de especies además de tener uno de los mayores porcentajes de endemismos. Uno de los aspectos más importantes para entender el ecosistema, es identificar y entender los elementos que lo componen y los mecanismos que regulan las relaciones entre ellos. Los árboles son el soporte del ecosistema. Sin embargo, apenas hay información sobre la distribución y coexistencia de los árboles en los bosques de niebla. Esta tesis presenta un análisis de la distribución a pequeña escala de las plantas leñosas en un bosque de niebla situado en la cordillera andina del norte de Perú; así como el análisis de algunos de los factores que pueden estar implicados en que se origine la distribución observada. Para este propósito se estudia cómo influyen factores de diferente naturaleza en la distribución de las especies (i) organización intra-específica (ii) relaciones espaciales heterospecíficas y (iii) relación con factores ambientales externos. En estos análisis se estudiaron primero las plantas jóvenes y las adultas, y después las plántulas. Los árboles aparecieron agregados en el bosque, tanto considerando todos a la vez como cuando se estudió cada especie por separado. Sin embargo, cada especie mostró un patrón distinto así como una particular relación espacial entre individuos jóvenes y adultos. El modo de dispersión, la forma de vida y la tolerancia de la especies estuvieron relacionados con el patrón general observado. Se vio también que ciertas especies aparecían relacionadas con otras, tanto de forma positiva (compartiendo zonas) como negativa (apareciendo en áreas distintas). Las asociaciones fueron mucho más numerosas cuando se consideraron los pares de especies en diferente estado de desarrollo, es decir, individuos jóvenes de una especie e individuos mayores de la otra. Eso indicaría que los procesos de competencia y facilitación son asimétricos y además varían durante la vida de la planta. Por otro lado, algunas especies aparecen preferentemente bajo ciertas condiciones de hábitat y evitan otras. La definición de hábitat a la que mejor responden las especies es cuando se incluyen tanto variables ambientales como de masa; así que ambos tipos de variables son necesarias para entender la preferencia de las especies por ciertos nichos. La distribución de las plántulas también estuvo relacionada con condiciones de hábitat, pero eso sólo llegaba a explicar hasta un 30% de la variabilidad espacial. La posición de los adultos de la misma especie también afectó a la distribución de las plántulas. En bastantes especies las plántulas evitan la cercanía de adultos de su misma especie, padres potenciales, aunque algunas especies aisladas mostraron el patrón contrario y aparecieron preferentemente en las mismas áreas que sus padres. La importancia de las condiciones de hábitat y posición de los adultos en la disposición de las plántulas varía de una zona a otra del bosque y además también varía según el estado de desarrollo de la masa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El bosque tropical de montaña, es considerado zona de mega diversidad y de alto grado de endemismo, por las diferentes zonas ecológicas que presenta. Durante las últimas décadas estos bosques han recibido mayor atención por parte de investigadores, sin embargo, aún existe poca investigación en determinar cuáles son las respuestas de los bosques a los cambios ambientales a los que son sometidos. Estos bosques están sufriendo serias amenazas como pérdida de cobertura vegetal y cambios en los ciclos de nutrientes. El trabajo se dividió en cuatro objetivos específicos. i) Caracterización y análisis de patrones altitudinales de la riqueza de especies en el bosque tropical de montaña en el sur del Ecuador; con el fin de conocer cómo varía la diversidad de especies riqueza lo largo de un gradiente altitudinal. ii) Conocer los patrones espaciales del crecimiento en tres remanentes boscosos de un bosque tropical de montaña para determinar cómo la vecindad y la semejanza funcional de ésta influyen en el crecimiento forestal. iii) Conocer los efectos de la fertilización en el crecimiento diamétrico de especies arbóreas, en el bosque tropical de montaña; se analizó cómo reaccionan los árboles a la adición de nutrientes N y P en tres tipos de bosque. iv) Saber la respuesta de la comunidad de árboles a la adición de nutrientes en el bosque montano andino; este objetivo se basó con el supuesto de la deficiencia de tres tipos de nutrientes N, P y Ca, en esta formación boscosa y cómo reaccionan los árboles a la adición de nutrientes. El presente trabajo se llevó a cabo, en el bosque tropical de montaña que se encuentra localizada en la parte adyacente del Parque Nacional Podocarpus (PNP) en la cordillera del Consuelo, forma parte de la cadena oriental de los Andes del sur del Ecuador El trabajo de desarrollo entre los años 2008 y 2014. Para abordar el primer objetivo se establecieron 54 parcelas ubicadas aleatoriamente a lo largo de un gradiente altitudinal (3 niveles de altitud) y se e midieron e identificaron todos los individuos mayores a 5cm de DAP. Se construyó una filogenia con Phylocom y se calcularon diferentes componentes de diversidad para cada parcela ( riqueza taxonómica, diversidad filogenética y edad media de las especies). Ajustando modelos lineares se contrastó el efecto de la altitud sobre dichos componentes y se vio que la riqueza taxonómica y la edad media de las especies aumentaron con la altitud, en sentido contrario a las predicciones de la "hipótesis del conservadurismo tropical" (Tropical Conservatism Hypothesis). Para abordar el segundo objetivo se realizó una remedición de todos los árboles cartografiados en tres parcelas permanentes de alrededor de 5000 m2 cada una, representativas de tres estados diferentes de la sucesión del bosque montano. A partir de las coordenadas y de los datos de registrados, y empleando diferentes funciones de correlación de marca se analizó la distribución espacial del tamaño y del crecimiento relativo y del tamaño. Se constató que mientras que el tamaño de los árboles presentó una correlación espacial negativa, el crecimiento presentó correlación espacial positiva, en ambos casos a distancias cortas. El rango y la magnitud de ambas correlaciones aumentaron al avanzar la sucesión. La distribución espacial del crecimiento mostró una correlación negativa con la distribución espacial de tamaños. Por otro lado, la distribución espacial del crecimiento mostró una correlación negativa para árboles semejantes funcionalmente y positiva cuando se calculó entre árboles con diferente estrategia funcional. En conjunto, los resultados obtenidos señalan un aumento de la importancia de procesos competitivos y una mayor estructuración espacial del crecimiento y de la distribución de tamaños al avanzar la sucesión. Para el tercer y cuarto objetivo se instalaron 52 parcelas distribuidas en bloques donde se fertilizaron dos veces al año durante 6,4 años, se identificaron todos los individuos mayores a 10 cm de DAP, y se midió el crecimiento diamétrico durante estos años Con la adición de nutrientes realizada a los diferentes tipos de bosque en la gradiente altitudinal, encontramos que el efecto sobre el crecimiento diamétrico en la comunidad varia con el rango altitudinal, y el tipo de nutriente, analizando a nivel de las especies, en la mayoría de los casos las especies comunes no tuvieron cambios significativos a la adición de nutrientes. Los resultados de este estudio aportan nuevas evidencias para el entendimiento de la diversidad, estructura y dinámica de los bosques tropicales de montaña. ABSTRACT The montane tropical forest is considered a megadiverse habitat that harbor an enormous degree of endemism. This is mainly due to the high degree of environmental heterogeneity found and the presence of different well defined ecological areas. These forests have received more attention during the last decades, however, the information regarding the responses of these forests to environmental change, is still scarce. These forests are seriously endangered and are suffering serious threats, such as loss of vegetative cover, changes in the nutrient cycles. The work was divided in four specific objectives: i) Characterization and analysis of the species richness altitudinal patterns in the montane tropical forest of south Ecuador. Specifically, how species diversity changes along altitudinal gradients. ii) Exploring the spatial patterns of tree growth in three remnants of a montane tropical forest, and analyze how tree neighborhood and functional similarity among trees influence tree growth. Tropical Conservatism Hypothesis iii) Understanding the effects of fertilization in arboreal species growth (increase in diameter) of the montane tropical forest. Specifically we studied the effects of P and N addition on three different forests across an altitudinal gradient. iv) Know the response of the community of trees to the addition of nutrients in the Andean montane forest; this objective was based on the supposition of deficiency of three types of nutrients: P, N and Ca in this forest all formation and how the trees react to the addition of these nutrients. The present work was carried out in the montane tropical forest located in Bombuscaro, San Francisco and Cajanuma close to Podocarpus National Park (PNP) on Consuelo mountain range (Andean oriental range) at South of Ecuador. Field work was carried out during 2008 and 2014. To address the first objective, we randomly placed 54 plots along an altitudinal gradient. In these plots, every individual larger than 5 cm of DBH was measured and identified. A phylogeny was build with Phylocom and different diversity components (taxonomic richness, phylogenetic diversity and average species age) were computed for each plot. Linear models were used to test the effects of altitude on the diversity components. Our results showed that, contrary to the Tropical Conservatism Hypothesis, both taxonomic richness and average species age increased with altitude. To address our second objective, all mapped trees in three successional permanent plots (around ~5000 m2 each) were re-measured. Using different mark correlation functions, we analyzed the spatial distribution of tree-size and tree relative growth rate. Whereas tree size showed negative spatial correlation at fine spatial scales, relative growth rate showed positive correlation at the same scales. The range and magnitude of those correlations increased along successional stage. The spatial distribution of the relative growth rate was negatively correlated with the spatial distribution of tree sizes. Additionally, we found that the spatial correlation of the relative growth rate was negative for functionally similar trees and positive when computed for functionally different trees. In synthesis, our results point to an increase of competitive processes and strong spatial structure of relative growth rate and tree size along succession. For the third and fourth objectives, 52 plots were placed in a block design and were fertilized twice a year for 6,4 years. In these plots all the individuals with DBH > 10 cm were identified, and the diametrical growth was measured during these years. The nutrient addition at the three different altitude forests, revealed that the effect on the diametrical growth in the community varied with the altitudinal range. When analyzed at species level, the addition of nutrients was no significant in most cases. These results represent new evidences that will improved our understanding of diversity patterns and structure, and the dynamics of tropical montane forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the dry Tumbesian forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental goal of plant population ecology is to understand the consequences for plant fitness of seed dispersal by animals. Theories of seed dispersal and tropical forest regeneration suggest that the advantages of seed dispersal for most plants are escape from seed predation near the parent tree and colonization of vacant sites, the locations of which are unpredictable in space and time. Some plants may gain in fitness as a fortuitous consequence of disperser behavior if certain species of dispersers nonrandomly place seeds in sites predictably favorable for seedling establishment. Such patterns of directed dispersal by vertebrates long have been suggested but never demonstrated for tropical forest trees. Here we report the pattern of seed distribution and 1-year seedling survival generated by five species of birds for a neotropical, shade-tolerant tree. Four of the species dispersed seeds to sites near the parent trees with microhabitat characteristics similar to those at random locations, whereas the fifth species, a bellbird, predictably dispersed seeds under song perches in canopy gaps. The pattern of seedling recruitment was bimodal, with a peak near parent trees and a second peak, corresponding to bellbird song perches, far (>40 m) from parent trees. Seedling survival was higher for seeds dispersed by bellbirds than by the other species, because of a reduction in seedling mortality by fungal pathogens in gaps. Thus, bellbirds play a significant role in seed dispersal by providing directed dispersal to favorable sites and therefore may influence plant recruitment patterns and species diversity in Neotropical forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: High gamma diversity in tropical montane forests may be ascribed to high geographical turnover of community composition, resulting from population isolation that leads to speciation. We studied the evolutionary processes responsible for diversity and turnover in assemblages of tropical scarab beetles (Scarabaeidae) by assessing DNA sequence variation at multiple hierarchical levels. Location: A 300-km transect across six montane forests (900–1100 m) in Costa Rica. Methods: Assemblages of Scarabaeidae (subfamilies Dynastinae, Rutelinae, Melolonthinae) including 118 morphospecies and > 500 individuals were sequenced for the cox1 gene to establish species limits with a mixed Yule–coalescent method. A species-level phylogenetic tree was constructed from cox1 and rrnL genes. Total diversity and turnover among assemblages were then assessed at three hierarchical levels: haplotypes, species and higher clades. Results: DNA-based analyses showed high turnover among communities at all hierarchical levels. Turnover was highest at the haplotype level (community similarity 0.02–0.12) and decreased with each step of the hierarchy (species: 0.21–0.46; clades: 0.41–0.43). Both compositional and phylogenetic similarities of communities were geographically structured, but turnover was not correlated with distance among forests. When three major clades were investigated separately, communities of Dynastinae showed consistently higher alpha diversity, larger species ranges and lower turnover than Rutelinae and Melolonthinae. Main conclusions: Scarab communities of montane forests show evidence of evolutionary persistence of communities in relative isolation, presumably tracking suitable habitats elevationally to accommodate climatic changes. Patterns of diversity on all hierarchical levels seem to be determined by restricted dispersal, and differences in Dynastinae could be explained by their greater dispersal ability. Community-wide DNA sequencing across multiple lineages and hierarchical levels reveals the evolutionary processes that led to high beta diversity in tropical montane forests through time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 67-year-old plantation of Flindersia brayleyana F. Muell. in the wet tropics of north-cast Queensland had developed with minimal management. Before thinning, the stand had a canopy stem density of 770 stems ha(-1) of which 564 were F brayleyana, a stand basal area of 78 m(2) ha(-1), a mean stem diameter at breast height (dbh) of 36 cm, and a mean dbh increment of 5.2 mm year(-1) over the life of the plantation and 0.5 mm year I at the time of thinning. Sixty-three percent of the trees had crown ratios (crown diameter determined from foliage projected area: dbh) of less than 12. Thinning treatments removed 57% of the canopy stems and 45% of the stand basal area. Mean dbh increment over 2.5 years after thinning on basaltic soil was 5.8 +/- 0.3 mm year(-1), but for trees with crown ratio

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After providing background on Dendrolagus species in Australia, two consecutive surveys of Brisbane's residents are used to assess public knowledge of tree-kangaroos and the stated degree of support for their conservation in Australia. The responses of participants in Survey I are based on their pre-survey knowledge of wildlife. The same set of participants completed Survey II after being provided with additional information on all the wildlife species mentioned in Survey I. Changes in the attitudes of respondents and their degree of support for the protection and conservation of Australia's tree-kangaroos are measured, including changes in their contingent valuations and stated willingness to provide financial support for such conservation. Reasons for wanting to protect tree-kangaroos are specified and analysed. Furthermore, changes that occur in the relative importance of these reasons with increased knowledge are also examined. Support for the conservation of tree-kangaroos is found to rise with the additional knowledge supplied about all species and is compared with variations in support for protection of other mammals. Support for the conservation of Australia's less well known tropical mammals is found to increase relative to better known mammals (icons) present in temperate areas, such as koalas and red kangaroos. Possible implications of the results for government conservation policies in Australia are examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monoculture plantations of Pinus, Eucalyptus and Acacia have been established oil rainforest lands throughout the world. However, this type of reforestation generally supplies low quality timber and contributes to landscape simplification. Alternatives to exotic monoculture plantations are now beginning to gain momentum with farmers and landholders attempting to establish a variety of rainforest trees in small plantations. When compared to the well studied commercial species, knowledge concerning the growth and management of many of these rainforest species is in its infancy. To help expand this limited knowledge base an experimental plantation of 16 rainforest tree species in a randomised design was established near Mt. Mee, in south-eastern Queensland, Australia. Changes in growth, form (based on stem straightness, branch size and branchiness), crown diameters and leaf area of each species were examined over 5 years. Patterns of height growth were also measured monthly for 31 months. Species in this trial could be separated into three groups based on their overall growth after 5 years and their growth patterns. Early successional status, low timber density, high maximum photosynthetic rates and large total leaf areas were generally correlated to rapid height growth. Several species (including Araucaria cunninghamii, Elaeocarpus grandis, Flindersia brayleyana, Grevillea robusta and Khaya nyasica) had above average form and growth, while all species in the trial had considerable potential to have increased productivity through tree selection. As canopy closure occurred at the site between years four and five, growth increments declined. To reduce stand competition a number of different thinning techniques could be employed. However, simple geometric or productivity based thinnings appear to be inappropriate management techniques for this mixed species stand as they would either remove many of the best performing trees or nearly half the species in the trial. Alternatively, a form based thinning would maintain the site's diversity, increase the average form of the plantation and provide some productivity benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Mesoamerica, tropical dry forest is a highly threatened habitat, and species endemic to this environment are under extreme pressure. The tree species, Lonchocarpus costaricensis is endemic to the dry northwest of Costa Rica and southwest Nicaragua. It is a locally important species but, as land has been cleared for agriculture, populations have experienced considerable reduction and fragmentation. To assess current levels and distribution of genetic diversity in the species, a combination of chloroplast-specific (cpDNA) and whole genome DNA markers (amplified fragment length polymorphism, AFLP) were used to fingerprint 121 individual trees in 6 populations. Two cpDNA haplotypes were identified, distributed among populations such that populations at the extremes of the distribution showed lowest diversity. A large number (487) of AFLP markers were obtained and indicated that diversity levels were highest in the two coastal populations (Cobano, Matapalo, H = 0.23, 0.28 respectively). Population differentiation was low overall, F-ST = 0.12, although Matapalo was strongly differentiated from all other populations (F-ST = 0.16-0.22), apart from Cobano (F., = 0.11). Spatial genetic structure was present in both datasets at different scales: cpDNA was structured at a range-wide distribution scale, whilst AFLP data revealed genetic neighbourhoods on a population scale. In general, the habitat degradation of recent times appears not to have yet impacted diversity levels in mature populations. However, although no data on seed or saplings were collected, it seems likely that reproductive mechanisms in the species will have been affected by land clearance. It is recommended that efforts should be made to conserve the extant genetic resource base and further research undertaken to investigate diversity levels in the progeny generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cyanogenic glycoside -6'-O-galloylsambunigrin - has been isolated from the foliage of the Australian tropical rainforest tree species Elaeocarpus sericopetalus F. Muell. (Elaeocarpaceae). This is the first formal characterisation of a cyanogenic constituent in the Elaeocarpaceae family, and only the second in the order Malvales. 6'-O-galloylsambunigrin was identified as the principal glycoside, accounting for 91% of total cyanogen in a leaf methanol extract. Preliminary analyses indicated that the remaining cyanogen content may comprise small quantities of sambunigrin, as well as di- and tri-gallates of sambunigrin. E. sericopetalus was found to have foliar concentrations of cyanogenic glycosides among the highest reported for tree leaves, up to 5.2 mg CN g(-1) dry wt. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reforestation in tropical areas is usually attempted by planting seedlings but, direct seeding (the artificial addition or sowing of seed) may be an alternative way of accelerating forest recovery and successional processes. This study investigated the effects of various sowing treatments (designed to create different microsite conditions for seed germination) and seed sizes on the early establishment and growth of directly sown rainforest tree species in a variety of experimental plots at three sites in the wet tropical region of north-cast Queensland, Australia. The different sowing treatments were found to have significant effects on seedling establishment. Broadcast sowing treatments were ineffective and resulted in very poor seedling establishment and high seed wastage. Higher establishment rates occurred when seeds were buried. Seed size was found to be an important factor affecting establishment in relation to micro-site condition. In general, larger seeded species had higher establishment rates at all three sites than species of small and intermediate seed size, but only in sowing treatments where seeds were buried. Overall these results suggest that direct sowing of seed can be used as a too] to accelerate recolonisation of certain rainforest tree species on degraded tropical lands, but initial success will be dependent on the choice of sowing method and its suitability for the seed types selected. The results also indicate that the recruitment of naturally dispersed tree species at degraded sites is likely to be severely limited by the availability of suitable microsites for seed germination. Consequently the natural recovery of degraded sites via seed rain can be expected to be slow and unpredictable, particularly in areas where soil compaction has occurred. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring vegetation structural parameters. The objective of this work was to evaluate Ikonos and Landsat-7 ETM+ imagery for mapping structural parameters and species composition of riparian vegetation in Australian tropical savannahs for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from Ikonos data were used for estimating leaf area index (R-2 = 0.13) and canopy percentage foliage cover (R-2 = 0.86). Pan-sharpened Ikonos data were used to map riparian species composition (overall accuracy = 55 percent) and riparian zone width (accuracy within +/- 3 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones.