261 resultados para Trichoderma pseudokoningii


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huanglongbing (HLB) is associated with Candidatus Liberibacter spp., endogenous, sieve tube-restricted bacteria that are transmitted by citrus psyllid insect vectors. Transgenic expression in the phloem of specific genes that might affect Ca. Liberibacter spp. growth and development may be an adequate strategy to improve citrus resistance to HLB. To study specific phloem gene expression in citrus, we developed three different binary vector constructs with expression cassettes bearing the beta-glucuronidase (GUS) reporter gene (uidA) under the control of one of the three different promoters: Citrus phloem protein 2 (CsPP2), Arabidopsis thaliana phloem protein 2 (AtPP2), and Arabidopsis thaliana sucrose transporter 2 (AtSUC2). Transgenic lines of 'Hamlin', 'Pera', and 'Valencia' sweet oranges [Citrus sinensis (L.) Osbeck] were produced via Agrobacterium tumefaciens transformation. The epicotyl segments collected from in vitro germinated seedlings were used as explants. The gene nptII, which confers resistance to the antibiotic kanamycin, was used for selection. The transformation efficiency was expressed as the number of GUS-positive shoots over the total number of explants and varied from 1.54 to 6.08 % among the three cultivars and three constructs studied. Several lines of the three sweet orange cultivars analyzed using PCR and Southern blot analysis were genetically transformed with the three constructs evaluated. The histological GUS activity in the leaves indicates that the uidA gene was preferentially expressed in the phloem, which suggests that the use of the three promoters might be adequate for producing HLB-resistant transgenic sweet oranges. The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters. Key message The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1-3 to corresponding iodophenylethanols 6-8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction-oxidation reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of the supplementation of xylanase in diets with reduced energy level on the apparent metabolizable energy corrected for nitrogen, determined with laying hens at 14, 36, 60 and 80 weeks of age. Four digestibility trials were conducted, using 80 Hy-line W36 laying hens aged 14, 36, 60 and 80 weeks of age. Birds were distributed in a completely randomized design in 2 x 2 factorial arrangement (energy level x inclusion of xylanase), totaling four treatments with 10 replicates of two birds each. Treatments were: positive control (balanced diet for their age); positive control + xylanase; negative control (diet with reduction of 100 kcal/kg in the level of metabolizable energy); and negative control + xylanase. Xylanase, produced by microorganism Trichoderma reesei, was added to the diets at 100 g/t (16,000 BXU/kg) for diets fed at 14 weeks and 75 g/t for diets of 36, 60 and 80 weeks (12,000 BXU/kg). The data obtained were subjected to analysis of variance at 5% probability. Supplementation of xylanase promoted higher values for AME (apparent metabolizable energy) and AME(n) (apparent metabolizable energy corrected for nitrogen) determined with 80-week-old laying hens, subjected to diet with energy level according to the nutritional requirements for their age. Supplementation of xylanase increases the matabolizability coefficient of the dietary crude protein and improves the nitrogen retention of laying hens at 14 weeks. In addition, xylanase associated with adequate levels of dietary energy promotes higher values for AME and AME(n) determined with laying hens at 80 weeks of age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra-and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. Results: Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U. mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2: 1 or 4: 1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic fiber. Conclusion: Cellobiohydrolases both with and without a CBD occur in most fungal genomes where both enzymes are secreted, and likely participate in cellulose degradation. The fact that only Cbh1 binds to the substrate and in combination with CelD exhibits strong synergy only when Cbh1 is present in excess, suggests that Cbh1 unties enough chains from cellulose fibers, thus enabling processive access of CelD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoascus aurantiacus is able to secrete most of the hemicellulolytic and cellulolytic enzymes. To establish the xylanase inducers of T. aurantiacus, the mycelia were first grown on glucose up until the end of the exponential growth phase, followed by washing and re-suspension in a basal medium without a carbon source. Pre-weighed amounts of xylose (final concentration of 3.5 mg/ml), xylobiose (7 mg/ml) and hydrolyzed xylan from sugarcane bagasse (HXSB) which contained xylose, xylobiose and xylotriose (6.8 mg/ml) were evaluated as inducers of xylanase. It was observed that xylose did not suppress enzyme induction of T. aurantiacus when used in low concentrations, regardless of whether it was inoculated with xylobiose. Xylobiose promoted fast enzyme production stopping after 10 h, even at a low consumption rate of the carbon source; therefore xylobiose appears to be the natural inducer of xylanase. In HXSB only a negligible xylanase activity was determined. Xylose present in HXSB was consumed within the first 10 h while xylobiose was partially hydrolyzed at a slow rate. The profile of alpha-arabinofuranosidase induction was very similar in media induced with xylobiose or HXSB, but induction with xylose showed some positive effects as well. The production profile for the xylanase was accompanied by low levels of cellulolytic activity. In comparison, growth in HXSB resulted in different profiles of both xylanase and cellulase production, excluding the possibility of xylanase acting as endoglucanases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular beta-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. beta-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 A degrees C and 3.0-5.5, respectively. beta-xylosidase was stable in acidic pH (3.0-6.0) and 70 A degrees C for 1 h. The enzyme was activated by 5 mM MnCl2 (28 %) and MgCl2 (20 %) salts. The beta-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-beta-d-xylopyranoside, exhibiting apparent K-m and V-max values of 0.66 mM and 39 U (mg protein)(-1) respectively, and to a lesser extent p-nitrophenyl-beta-d-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources, suggesting a novel beta-d-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by beta-xylosidase. TLC confirmed the capacity of the enzyme in hydrolyzing xylan and larger xylo-oligosaccharides, as xylopentaose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylanases (EC 3.2.1.8 endo-1,4-glycosyl hydrolase) catalyze the hydrolysis of xylan, an abundant hemicellulose of plant cell walls. Access to the catalytic site of GH11 xylanases is regulated by movement of a short beta-hairpin, the so-called thumb region, which can adopt open or closed conformations. A crystallographic study has shown that the D11F/R122D mutant of the GH11 xylanase A from Bacillus subtilis (BsXA) displays a stable "open" conformation, and here we report a molecular dynamics simulation study comparing this mutant with the native enzyme over a range of temperatures. The mutant open conformation was stable at 300 and 328 K, however it showed a transition to the closed state at 338 K. Analysis of dihedral angles identified thumb region residues Y113 and T123 as key hinge points which determine the open-closed transition at 338 K. Although the D11F/R122D mutations result in a reduction in local inter-intramolecular hydrogen bonding, the global energies of the open and closed conformations in the native enzyme are equivalent, suggesting that the two conformations are equally accessible. These results indicate that the thumb region shows a broader degree of energetically permissible conformations which regulate the access to the active site region. The R122D mutation contributes to the stability of the open conformation, but is not essential for thumb dynamics, i.e., the wild type enzyme can also adapt to the open conformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Nutrient sensing and acquisition mechanisms, as well as the capability to cope with different stressing conditions, are essential for A. fumigatus virulence and survival in the mammalian host. This study characterized the A. fumigatus SebA transcription factor, which is the putative homologue of the factor encoded by Trichoderma atroviride seb1. The Delta sebA mutant demonstrated reduced growth in the presence of paraquat, hydrogen peroxide, CaCl2, and poor nutritional conditions, while viability associated with sebA was also affected by heat shock exposure. Accordingly, SebA:GFP (SebA:green fluorescent protein) was shown to accumulate in the nucleus upon exposure to oxidative stress and heat shock conditions. In addition, genes involved in either the oxidative stress or heat shock response had reduced transcription in the Delta sebA mutant. The A. fumigatus Delta sebA strain was attenuated in virulence in a murine model of invasive pulmonary aspergillosis. Furthermore, killing of the Delta sebA mutant by murine alveolar macrophages was increased compared to killing of the wild-type strain. A. fumigatus SebA plays a complex role, contributing to several stress tolerance pathways and growth under poor nutritional conditions, and seems to be integrated into different stress responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present the results of an experimental approach developed to study the macroscopic and microbiological alteration of bird and small mammal bones buried under a Cerrado biome. The first experiment evaluated the macroscopic alteration of cooked and fresh carcasses buried through the dry and rainy seasons. The second experiment analyzed the mycobiota associated to the decomposition of a complete bird that remained buried for almost a year. Results show that in tropical forest environments: 1) bone structure and pre-taphonomic factors determine its differential alteration by biochemical processes; 2) fungal populations associated to the decomposition of animal remains depend on soil chemistry and ecological dynamics; 3) even in a corrosive environment, bird bones are more capable of surviving to several mycological decomposition steps. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. Results The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. Conclusions The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sporotrichosis is a subcutaneous mycosis and is also a zoonosis (sapro- and anthropozoonosis). The objective of the present study was to determine the occurrence of sporotrichosis in domestic cats and in wild or exotic felines in captivity through the isolation of Sporothrix spp. from claw impressions in a culture medium. The samples included 132 felines, of which 120 (91.0 %) were domestic cats, 11 (8.3 %) were wild felines, and one (0.7 %) was an exotic felid. Twenty-one (17.5 %) were outdoor cats. Of the total, 89 (67.4 %) had contact with other animals of the same species. It was possible to isolate Sporothrix schenckii from the claws of one (0.7 %) of the felids probed; this animal exhibited generalised sporotrichosis and had infected a female veterinarian. The potential pathogenic agents Microsporum canis and Malassezia pachydermatis were isolated in 12.1 and 5.3 % of the animals, respectively. The following anemophilous fungi, which were considered to be contaminants, were also isolated: Penicillium sp. (28 or 21.2 %), Aspergillus sp. (13 or 9.8 %), Rhodotorula sp. (5 or 3.8 %), Candida sp. (5 or 3.8 %), Trichoderma sp. (1 or 0.7 %), and Acremonium sp. (1 or 0.7 %). Due to the low magnitude of occurrence (0.7 %) of Sporothrix in feline claws, the potential of the cats evaluated in this study to be sources of infection in the city of São Paulo is considerably low.