972 resultados para Synthetic Peptide
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter beta-domain of the Neisseria gonorrhoeae IgA protease precursor (IgA beta), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane. The expression of the SS-EC20sp-IgA beta gene fusion was driven by a modified version of the Bacillus subtilis mrgA promoter showing high level basal gene expression that is further enhanced by metal presence in C. metallidurans. The recombinant strain showed increased ability to immobilize Pb2+, Zn2+, Cu2+, Cd2+, Mn2+, and Ni2+ ions from the external medium when compared to the control strain. To ensure plasmid stability and biological containment, the MOB region of the plasmid was replaced by the E. coli hok/sok coding sequence.
Resumo:
Synthetic Routes toward Functional Block Copolymers and Bioconjugates via RAFT PolymerizationrnSynthesewege für funktionelle Blockcopolymere und Biohybride über RAFT PolymerisationrnDissertation von Dipl.-Chem. Kerstin T. WissrnIm Rahmen dieser Arbeit wurden effiziente Methoden für die Funktionalisierung beider Polymerkettenenden für Polymer- und Bioanbindung von Polymeren entwickelt, die mittels „Reversible Addition-Fragmentation Chain Transfer“ (RAFT) Polymerisation hergestellt wurden. Zu diesem Zweck wurde ein Dithioester-basiertes Kettentransferagens (CTA) mit einer Aktivestereinheit in der R-Gruppe (Pentafluorphenyl-4-phenylthiocarbonylthio-4-cyanovaleriansäureester, kurz PFP-CTA) synthetisiert und seine Anwendung als universelles Werkzeug für die Funktionalisierung der -Endgruppe demonstriert. Zum Einen wurde gezeigt, wie dieser PFP-CTA als Vorläufer für die Synthese anderer funktioneller CTAs durch einfache Aminolyse des Aktivesters genutzt werden kann und somit den synthetischen Aufwand, der üblicherweise mit der Entwicklung neuer CTAs verbunden ist, reduzieren kann. Zum Anderen konnte der PFP-CTA für die Synthese verschiedener Poly(methacrylate) mit enger Molekulargewichtsverteilung und wohl definierter reaktiver -Endgruppe verwendet werden. Dieses Kettenende konnte dann erfolgreich mit verschiedenen primären Aminen wie Propargylamin, 1-Azido-3-aminopropan und Ethylendiamin oder direkt mit den Amin-Endgruppen verschiedener Peptide umgesetzt werden.rnAus der Reaktion des PFP-CTAs mit Propargylamin wurde ein Alkin-CTA erhalten, der sich als effizientes Werkzeug für die RAFT Polymerisation verschiedener Methacrylate erwiesen hat. Der Einbau der Alkin-Funktion am -Kettenende wurde mittels 1H und 13C NMR Spektroskopie sowie MALDI TOF Massenspektroskopie bestätigt. Als Modelreaktion wurde die Kopplung eines solchen alkin-terminierten Poly(di(ethylenglykol)methylethermethacrylates) (PDEGMEMA) mit azid-terminiertem Poly(tert-butylmethacrylat), das mittels Umsetzung einer Aktivester-Endgruppe erhalten wurde, als kupferkatalysierte Azid-Alkin-Cycloaddition (CuAAC) durchgeführt. Die Aufarbeitung des resultierenden Diblockcopolymers durch Fällen ermöglichte die vollständige Abtrennung des Polymerblocks 1, der im Überschuss eingesetzt wurde. Darüber hinaus blieb nur ein sehr kleiner Anteil (< 2 Gew.-%) nicht umgesetzten Polymerblocks 2, was eine erfolgreiche Polymeranbindung und die Effizienz der Endgruppen-Funktionalisierung ausgehend von der Aktivester--Endgruppe belegt.rnDie direkte Reaktion von stimuli-responsiven Polymeren mit Pentafluorphenyl(PFP)ester-Endgruppen, namentlich PDEGMEMA und Poly(oligo(ethylenglykol)methylethermethacrylat), mit kollagen-ähnlichen Peptiden ergab wohl definierte Polymer-Peptid-Diblockcopolymere und Polymer-Peptid-Polymer-Triblockcopolymer unter nahezu quantitativer Umsetzung der Endgruppen. Alle Produkte konnten vollständig von nicht umgesetztem Überschuss des Homopolymers befreit werden. In Analogie zu natürlichem Kollagen und dem nicht funktionalisierten kollagen-ähnlichen Peptid bilden die PDEGMEMA-basierten, entschützten Hybridcopolymere Trimere mit kollagen-ähnlichen Triple-Helices in kalter wässriger Lösung, was mittels Zirkular-Dichroismus-Spektroskopie (CD) nachgewiesen werden konnte. Temperaturabhängige CD-Spektroskopie, Trübungsmessungen und dynamische Lichtstreuung deuteten darauf hin, dass sie bei höheren Temperaturen doppelt stimuli-responsive Überstrukturen bilden, die mindestens zwei konformative Übergänge beim Aufheizen durchlaufen. Einer dieser Übergänge wird durch den hydrophoben Kollaps des Polymerblocks induziert, der andere durch Entfalten der kollagen-ähnlichen Triple-Helices.rnAls Ausweitung dieser synthetischen Strategie wurde homotelecheles PDEGMEMA mit zwei PFP-Esterendgruppen dargestellt, wozu der PFP-CTA für die Funktionalisierung der -Endgruppe und die radikalische Substitution des Dithioesters durch Behandlung mit einem Überschuss eines funktionellen AIBN-Derivates für die Funktionalisierung der -Endgruppe ausgenutzt wurde. Die Umsetzung der beiden reaktiven Kettenenden mit dem N-Terminus eines Peptidblocks ergab ein Peptid-Polymer-Peptid Triblockcopolymer.rnSchließlich konnten die anorganisch-organischen Hybridmaterialien PMSSQ-Poly(2,2-diethoxyethylacrylat) (PMSSQ-PDEEA) und PMSSQ-Poly(1,3-dioxolan-2-ylmethylacrylat) (PMSSQ-PDMA) für die Herstellung robuster, peptid-reaktiver Oberflächen durch Spin Coaten und thermisch induziertes Vernetzen angewendet werden. Nach saurem Entschützen der Acetalgruppen in diesen Filmen konnten die resultierenden Aldehydgruppen durch einfaches Eintauchen in eine Lösung mit einer Auswahl von Aminen und Hydroxylaminen umgesetzt werden, wodurch die Oberflächenhydrophilie modifiziert werden konnte. Darüber hinaus konnten auf Basis der unterschiedlichen Stabilität der zwei hier verglichenen Acetalgruppen Entschützungsprotokolle für die exklusive Entschützung der Diethylacetale in PMSSQ-PDEEA und deren Umsetzung ohne Entschützung der zyklischen Ethylenacetale in PMSSQ-PDMA entwickelt werden, die die Herstellung multifunktioneller Oberflächenbeschichtungen z.B. für die Proteinimmobilisierung ermöglichen.
Resumo:
A protein of a biological sample is usually quantified by immunological techniques based on antibodies. Mass spectrometry offers alternative approaches that are not dependent on antibody affinity and avidity, protein isoforms, quaternary structures, or steric hindrance of antibody-antigen recognition in case of multiprotein complexes. One approach is the use of stable isotope-labeled internal standards; another is the direct exploitation of mass spectrometric signals recorded by LC-MS/MS analysis of protein digests. Here we assessed the peptide match score summation index based on probabilistic peptide scores calculated by the PHENYX protein identification engine for absolute protein quantification in accordance with the protein abundance index as proposed by Mann and co-workers (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245). Using synthetic protein mixtures, we demonstrated that this approach works well, although proteins can have different response factors. Applied to high density lipoproteins (HDLs), this new approach compared favorably to alternative protein quantitation methods like UV detection of protein peaks separated by capillary electrophoresis or quantitation of protein spots on SDS-PAGE. We compared the protein composition of a well defined HDL density class isolated from plasma of seven hypercholesterolemia subjects having low or high HDL cholesterol with HDL from nine normolipidemia subjects. The quantitative protein patterns distinguished individuals according to the corresponding concentration and distribution of cholesterol from serum lipid measurements of the same samples and revealed that hypercholesterolemia in unrelated individuals is the result of different deficiencies. The presented approach is complementary to HDL lipid analysis; does not rely on complicated sample treatment, e.g. chemical reactions, or antibodies; and can be used for projective clinical studies of larger patient groups.
Resumo:
Synthetic oligonucleotides and peptides have found wide applications in industry and academic research labs. There are ~60 peptide drugs on the market and over 500 under development. The global annual sale of peptide drugs in 2010 was estimated to be $13 billion. There are three oligonucleotide-based drugs on market; among them, the FDA newly approved Kynamro was predicted to have a $100 million annual sale. The annual sale of oligonucleotides to academic labs was estimated to be $700 million. Both bio-oligomers are mostly synthesized on automated synthesizers using solid phase synthesis technology, in which nucleoside or amino acid monomers are added sequentially until the desired full-length sequence is reached. The additions cannot be complete, which generates truncated undesired failure sequences. For almost all applications, these impurities must be removed. The most widely used method is HPLC. However, the method is slow, expensive, labor-intensive, not amendable for automation, difficult to scale up, and unsuitable for high throughput purification. It needs large capital investment, and consumes large volumes of harmful solvents. The purification costs are estimated to be more than 50% of total production costs. Other methods for bio-oligomer purification also have drawbacks, and are less favored than HPLC for most applications. To overcome the problems of known biopolymer purification technologies, we have developed two non-chromatographic purification methods. They are (1) catching failure sequences by polymerization, and (2) catching full-length sequences by polymerization. In the first method, a polymerizable group is attached to the failure sequences of the bio-oligomers during automated synthesis; purification is achieved by simply polymerizing the failure sequences into an insoluble gel and extracting full-length sequences. In the second method, a polymerizable group is attached to the full-length sequences, which are then incorporated into a polymer; impurities are removed by washing, and pure product is cleaved from polymer. These methods do not need chromatography, and all drawbacks of HPLC no longer exist. Using them, purification is achieved by simple manipulations such as shaking and extraction. Therefore, they are suitable for large scale purification of oligonucleotide and peptide drugs, and also ideal for high throughput purification, which currently has a high demand for research projects involving total gene synthesis. The dissertation will present the details about the development of the techniques. Chapter 1 will make an introduction to oligodeoxynucleotides (ODNs), their synthesis and purification. Chapter 2 will describe the detailed studies of using the catching failure sequences by polymerization method to purify ODNs. Chapter 3 will describe the further optimization of the catching failure sequences by polymerization ODN purification technology to the level of practical use. Chapter 4 will present using the catching full-length sequence by polymerization method for ODN purification using acid-cleavable linker. Chapter 5 will make an introduction to peptides, their synthesis and purification. Chapter 6 will describe the studies using the catching full-length sequence by polymerization method for peptide purification.
Resumo:
Short synthetic peptides are important tools in biomedical research permitting to generate hapten specific polyclonal sera for analytical purposes or functional studies. In this paper we provide proof of principle that a peptide located in a highly conserved portion of the Gag protein of the caprine arthritis encephalitis virus and carrying an immunodominant T helper cell epitope functions as an efficient carrier peptide, mediating a strong antibody response to a peptidic hapten encompassing a well-characterized B cell epitope of Env. The carrier and hapten peptides were collinearly synthesized permutating their molecular arrangement. While the antibody response to the hapten was similar for both constructs, the antibody response to a B cell epitope overlapping the T helper cell epitope of the Gag carrier peptide was considerably different. This permits a modular use of the carrier peptide to generate antibody directed exclusively to the hapten peptide or a strong humoral response to both carrier- and hapten-peptide. Finally, we have mapped the epitopes involved in this polarized antibody response and discussed the potential immunological implications.
Resumo:
Synthetic peptides containing a repetitive hexapeptide sequence (Ala-His-His-Ala-Ala-Asp) of malarial histidine-rich protein II were evaluated for binding with haem in vitro. The pattern of haem binding suggested that each repeat unit of this sequence provides one binding site for haem. Chloroquine inhibited the haem-peptide complex formation with preferential formation of a haem chloroquine complex. In vitro studies on haem polymerisation showed that none of the peptides could initiate haemozoin formation. However, they could inhibit haemozoin formation promoted by a malarial parasite extract, possibly by competitively binding free haem. These results indicate this hexapeptide sequence represents the haem binding site of the malarial histidine-rich protein and possibly the site of nucleation for haem polymerisation.
Resumo:
Peptide dendrimers are synthetic tree-like molecules composed of amino acids. There are at least two kinds of preferential structural behaviors exhibited by these molecules, which acquire either compact or noncompact shapes. However, the key structural determinants of such behaviors remained, until now, unstudied. Herein, we conduct a comprehensive investigation of the structural determinants of peptide dendrimers by employing long molecular dynamics simulations to characterize an extended set of third generation dendrimers. Our results clearly show that a trade-off between electrostatic effects and hydrogen bond formation controls structure acquisition in these systems. Moreover, by selectively changing the dendrimers charge we are able to manipulate the exhibited compactness. In contrast, the length of branching residues does not seem to be a major structural determinant. Our results are in accordance with the most recent experimental evidence and shed some light on the key molecular level interactions controlling structure acquisition in these systems. Thus, the results presented constitute valuable insights that can contribute to the development of truly tailor-made dendritic systems.
Resumo:
Coagulation factor XII (FXII) inhibitors are of interest for the study of the protease in the intrinsic coagulation pathway, for the suppression of contact activation in blood coagulation assays, and they have potential application in antithrombotic therapy. However, synthetic FXII inhibitors developed to date have weak binding affinity and/or poor selectivity. Herein, we developed a peptide macrocycle that inhibits activated FXII (FXIIa) with an inhibitory constant Ki of 22 nM and a selectivity of >2000-fold over other proteases. Sequence and structure analysis revealed that one of the two macrocyclic rings of the in vitro evolved peptide mimics the combining loop of corn trypsin inhibitor, a natural protein-based inhibitor of FXIIa. The synthetic inhibitor blocked intrinsic coagulation initiation without affecting extrinsic coagulation. Furthermore, the peptide macrocycle efficiently suppressed plasma coagulation triggered by contact of blood with sample tubes and allowed specific investigation of tissue factor initiated coagulation.
Resumo:
Tuftsin is an immunopotentiating tetrapeptide of the sequence L-Thr-L-Lys-L-Pro-L-Arg with anti-microbial and anti-tumor enhancing capabilities. These enhancing functions are manifested through the host's granulocytes and monocytes. In delineating tuftsin's mechanism of action, both radiolabeled and fluorescent probes were synthesized. The radiolabeled probe of tuftsin, L-proly-3,4-('3)H(N) -tuftsin, was obtained through the synthesis and subsequent catalytic hydrogenation of L-3,4-dehydroprolyl ('3)-tuftsin using tritium gas. This procedure yielded a probe with a specific activity of 44.9 Ci/mmole. This radiolabeled probe of tuftsin was used in competitive inhibition studies with tuftsin, the tuftsin analogues Lys-Pro-Arg, Thr-Lys-Pro-Arg(NO(,2)) and (DELTA)('3)-pro('3) -tuftsin as well as with the chemotactic peptide f-Met-Leu-Phe. From the competitive binding curves, the K(,D) for tuftsin was estimated to be 80 nM, a value that approaches the concentration of tuftsin that evokes a half maximal biological response. The approximate Ki's for the tuftsin analogues (33 nM) approached that of tuftsin itself (40 nM). On the other hand, approximately a two log difference in the Ki was seen with the chemotactic tripeptide, indicating that tuftsin may indeed be acting through the chemotactic peptide receptor. This conclusion is further strengthened by studies using an N-terminal derivitized mono-fluoresceinated tuftsin probe and image intensification microscopy. These studies showed that like the chemotactic peptide, tuftsin initially binds to diffusely distributed receptors on the surface of human granulocytes. The tuftsin-receptor complexes then rapidly redistribute to form patches (5 min @ 37(DEGREES)C) which are then internalized. Whether redistribution and internalization of tuftsin-receptor complexes is crucial in effecting a biological response, or simply an intermediary point leading ultimately to degradation, is still not clear. This process, however, may provide the target cell with an early time point in modulating the biological effects of tuftsin through down-regulation of cell surface receptor sites. ^
Resumo:
Alanine-based peptides of defined sequence and length show measurable helix contents, allowing them to be used as a model system both for analyzing the mechanism of helix formation and for investigating the contributions of side-chain interactions to protein stability. Extensive characterization of many peptide sequences with varying amino acid contents indicates that the favorable helicity of alanine-based peptides can be attributed to the large helix-stabilizing propensity of alanine. Based on their analysis of alanine-rich sequences N-terminally linked to a synthetic helix-inducing template, Kemp and coworkers [Kemp, D. S., Boyd, J. G. & Muendel, C. C. (1991) Nature (London) 352, 451–454; Kemp, D. S., Oslick, S. L. & Allen, T. J. (1996) J. Am. Chem. Soc. 118, 4249–4255] argue that alanine is helix-indifferent, however, and that the favorable helix contents of alanine-based peptides must have some other explanation. Here, we show that the helix contents of template-nucleated sequences are influenced strongly by properties of the template–helix junction. A model in which the helix propensities of residues at the template–peptide junction are treated separately brings the results from alanine-based peptides and template-nucleated helices into agreement. The resulting model provides a physically plausible resolution of the discrepancies between the two systems and allows the helix contents of both template-nucleated and standard peptide helices to be predicted by using a single set of helix propensities. Helix formation in both standard peptides and template–peptide conjugates can be attributed to the large intrinsic helix-forming tendency of alanine.
Resumo:
Copolymer 1 [poly(Y,E,A,K)] is a random synthetic amino acid copolymer of l-tyrosine, l-glutamic acid, l-alanine, and l-lysine that is effective both in suppression of experimental allergic encephalomyelitis and in the treatment of relapsing forms of multiple sclerosis. Copolymer 1 binds promiscuously and very efficiently to purified HLA-DR molecules within the peptide-binding groove. In the present study, YEAK and YEAK-related copolymers and type II collagen (CII) peptide 261–273, a candidate autoantigen in rheumatoid arthritis (RA), competed for binding to RA-associated HLA-DR molecules encoded by DRB1*0101 and DRB1*0401. Moreover, these copolymers (particularly YEAK, YAK, and YEK) inhibited the response of DR1- and DR4-restricted T cell clones to the CII epitope 261–273 by >50%. This direct evidence both for competitive interactions of these copolymers and CII peptide with RA-associated HLA-DR molecules and for inhibition of CII-specific T cell responses suggests that these compounds should be evaluated in animal models for rheumatoid arthritis.
Resumo:
Lipochitooligosaccharides (LCOs) are plant growth regulators that promote at subfemtomolar concentrations cell division in tobacco protoplasts. In response to LCO treatment, tobacco cells release a second growth factor that fully mediates the growth-promoting activities of the initial extracellular LCO stimulus. This diffusible growth factor was isolated from the protoplasts’ culture filtrate and shown to be a peptide. We report that the LCO-induced mitogen released by tobacco cells and a synthetic heptadecapeptide derived from region 2 of the tobacco homolog of the early nodulin gene ENOD40 are antigenically related and qualitatively indistinguishable in their ability to stimulate cell division.
Resumo:
2C is a typical alloreactive cytotoxic T lymphocyte clone that recognizes two different ligands. These ligands are adducts of the allo-major histocompatibility complex (MHC) molecule H-2Ld and an endogenous octapeptide, and of the self-MHC molecule H-2Kb and another peptide. MHC-binding and T-cell assays with synthetic peptides in combination with molecular modeling studies were employed to analyze the structural basis for this crossreactivity. The molecular surfaces of the two complexes differ greatly in densities and distributions of positive and negative charges. However, modifications of the peptides that increase similarity decrease the capacities of the resulting MHC peptide complexes to induce T-cell responses. Moreover, the roles of the peptides in ligand recognition are different for self- and allo-MHC-restricted T-cell responses. The self-MHC-restricted T-cell responses were finely tuned to recognition of the peptide. The allo-MHC-restricted responses, on the other hand, largely ignore modifications of the peptide. The results strongly suggest that adaptation of the T-cell receptor to the different ligand structures, rather than molecular mimicry by the ligands, is the basis for the crossreactivity of 2C. This conclusion has important implications for T-cell immunology and for the understanding of immunological disorders.
Resumo:
Covalent fusions between an mRNA and the peptide or protein that it encodes can be generated by in vitro translation of synthetic mRNAs that carry puromycin, a peptidyl acceptor antibiotic, at their 3′ end. The stable linkage between the informational (nucleic acid) and functional (peptide) domains of the resulting joint molecules allows a specific mRNA to be enriched from a complex mixture of mRNAs based on the properties of its encoded peptide. Fusions between a synthetic mRNA and its encoded myc epitope peptide have been enriched from a pool of random sequence mRNA-peptide fusions by immunoprecipitation. Covalent RNA-peptide fusions should provide an additional route to the in vitro selection and directed evolution of proteins.