975 resultados para Sudden infant death syndrome
Resumo:
A 19-year-old female with type 1 diabetes for four years, and a 73-year-old female with type 2 diabetes for twenty years developed sudden-onset nephrotic syndrome. Examination by light microscopy, immunofluorescence, and electron microscopy (in one case) identified minimal change disease (MCD) in both cases. There was a potential causative drug (meloxicam) for the 73-year-old patient. Both patients were treated with prednisone and responded with complete remission. The patient with type 1 diabetes showed complete remission without relapse, and the patient with type 2 diabetes had two relapses; complete remission was sustained after associated treatment with cyclophosphamide and prednisone. Both patients had two years of follow-up evaluation after remission. We discuss the outcomes of both patients and emphasize the role of kidney biopsy in diabetic patients with an atypical proteinuric clinical course, because patients with MCD clearly respond to corticotherapy alone or in conjunction with other immunosuppressive agents. Arq Bras Endocrinol Metab. 2012;56(5):331-5
Resumo:
Assessing the efficacy of implantable cardioverter-defibrillators (ICD) in patients with Chagas' heart disease (ChHD) and identifying the clinical predictors of mortality and ICD shock during long-term follow-up. ChHD is associated with ventricular tachyarrhythmias and an increased risk of sudden cardiac death. Although ChHD is a common form of cardiomyopathy in Latin American ICD users, little is known about its efficacy in the treatment of this population. The study cohort included 116 consecutive patients with ChHD and an ICD implanted for secondary prevention. Of the 116 patients, 83 (72%) were men; the mean age was 54 +/- 10.7 years. Several clinical variables were tested in a multivariate Cox model for predicting long-term mortality. The average follow-up was 45 +/- 32 months. New York Heart Association class I-II developed in 83% of patients. The mean left ventricular ejection fraction was 42 +/- 16% at implantation. Of the 116 patients, 58 (50%) had appropriate shocks and 13 (11%) had inappropriate therapy. A total of 31 patients died (7.1% annual mortality rate). New York Heart Association class III (hazard ratio [HR] 3.09, 95% confidence interval 1.37 to 6.96, p = 0.0064) was a predictor of a worse prognosis. The left ventricular ejection fraction (HR 0.972, 95% confidence interval 0.94 to 0.99, p = 0.0442) and low cumulative right ventricular pacing (HR 0.23, 95% confidence interval 0.11 to 0.49, p = 0.0001) were predictors of better survival. The left ventricular diastolic diameter was an independent predictor of appropriate shock (I-ER 1.032, 95% confidence interval 1.004 to 1.060, p = 0.025). In conclusion, in a long-term follow-up, ICD efficacy for secondary sudden cardiac death prevention in patients with ChHD was marked by a favorable annual rate of all-cause mortality (7.1%); 50% of the cohort received appropriate shock therapy. New York Heart Association class III and left ventricular ejection fraction were independent predictors of worse prognosis, and low cumulative right ventricular pacing defined better survival. (C) 2012 Elsevier Inc. All rights reserved. (Am J Cardiol 2012;110:1040-1045)
Resumo:
Sudden cardiac death due to ventricular arrhythmia is one of the leading causes of mortality in the world. In the last decades, it has proven that anti-arrhythmic drugs, which prolong the refractory period by means of prolongation of the cardiac action potential duration (APD), play a good role in preventing of relevant human arrhythmias. However, it has long been observed that the “class III antiarrhythmic effect” diminish at faster heart rates and that this phenomenon represent a big weakness, since it is the precise situation when arrhythmias are most prone to occur. It is well known that mathematical modeling is a useful tool for investigating cardiac cell behavior. In the last 60 years, a multitude of cardiac models has been created; from the pioneering work of Hodgkin and Huxley (1952), who first described the ionic currents of the squid giant axon quantitatively, mathematical modeling has made great strides. The O’Hara model, that I employed in this research work, is one of the modern computational models of ventricular myocyte, a new generation began in 1991 with ventricular cell model by Noble et al. Successful of these models is that you can generate novel predictions, suggest experiments and provide a quantitative understanding of underlying mechanism. Obviously, the drawback is that they remain simple models, they don’t represent the real system. The overall goal of this research is to give an additional tool, through mathematical modeling, to understand the behavior of the main ionic currents involved during the action potential (AP), especially underlining the differences between slower and faster heart rates. In particular to evaluate the rate-dependence role on the action potential duration, to implement a new method for interpreting ionic currents behavior after a perturbation effect and to verify the validity of the work proposed by Antonio Zaza using an injected current as a perturbing effect.
Resumo:
Ventricular cells are immersed in a bath of electrolytes and these ions are essential for a healthy heart and a regular rhythm. Maintaining physiological concentration of them is fundamental for reducing arrhythmias and risk of sudden cardiac death, especially in haemodialysis patients and in the heart diseases treatments. Models of electrically activity of the heart based on mathematical formulation are a part of the efforts to improve the understanding and prediction of heart behaviour. Modern models incorporate the extensive and ever increasing amounts of experimental data in incorporating biophysically detailed mechanisms to allow the detailed study of molecular and subcellular mechanisms of heart disease. The goal of this project was to simulate the effects of changes in potassium and calcium concentrations in the extracellular space between experimental data and and a description incorpored into two modern biophysically detailed models (Grandi et al. Model; O’Hara Rudy Model). Moreover the task was to analyze the changes in the ventricular electrical activity, in particular by studying the modifications on the simulated electrocardiographic signal. We used the cellular information obtained by the heart models in order to build a 1D tissue description. The fibre is composed by 165 cells, it is divided in four groups to differentiate the cell types that compound human ventricular tissue. The main results are the following: Grandi et al. (GBP) model is not even able to reproduce the correct action potential profile in hyperkalemia. Data from hospitalized patients indicates that the action potential duration (APD) should be shorter than physiological state but in this model we have the opposite. From the potassium point of view the results obtained by using O’Hara model (ORD) are in agreement with experimental data for the single cell action potential in hypokalemia and hyperkalemia, most of the currents follow the data from literature. In the 1D simulations we were able to reproduce ECGs signal in most the potassium concentrations we selected for this study and we collected data that can help physician in understanding what happens in ventricular cells during electrolyte disorder. However the model fails in the conduction of the stimulus under hyperkalemic conditions. The model emphasized the ECG modifications when the K+ is slightly more than physiological value. In the calcium setting using the ORD model we found an APD shortening in hypocalcaemia and an APD lengthening in hypercalcaemia, i.e. the opposite to experimental observation. This wrong behaviour is kept in one dimensional simulations bringing a longer QT interval in the ECG under higher [Ca2+]o conditions and vice versa. In conclusion it has highlighted that the actual ventricular models present in literature, even if they are useful in the original form, they need an improvement in the sensitivity of these two important electrolytes. We suggest an use of the GBP model with modifications introduced by Carro et al. who understood that the failure of this model is related to the Shannon et al. model (a rabbit model) from which the GBP model was built. The ORD model should be modified in the Ca2+ - dependent IcaL and in the influence of the Iks in the action potential for letting it him produce a correct action potential under different calcium concentrations. In the 1D tissue maybe a heterogeneity setting of intra and extracellular conductances for the different cell types should improve a reproduction of the ECG signal.
Resumo:
The heart is a wonderful but complex organ: it uses electrochemical mechanisms in order to produce mechanical energy to pump the blood throughout the body and allow the life of humans and animals. This organ can be subject to several diseases and sudden cardiac death (SCD) is the most catastrophic manifestation of these diseases, responsible for the death of a large number of people throughout the world. It is estimated that 325000 Americans annually die for SCD. SCD most commonly occurs as a result of reentrant tachyarrhythmias (ventricular tachycardia (VT) and ventricular fibrillation (VF)) and the identification of those patients at higher risk for the development of SCD has been a difficult clinical challenge. Nowadays, a particular electrocardiogram (ECG) abnormality, “T-wave alternans” (TWA), is considered a precursor of lethal cardiac arrhythmias and sudden death, a sensitive indicator of risk for SCD. TWA is defined as a beat-to-beat alternation in the shape, amplitude, or timing of the T-wave on the ECG, indicative of the underlying repolarization of cardiac cells [5]. In other words TWA is the macroscopic effect of subcellular and celluar mechanisms involving ionic kinetics and the consequent depolarization and repolarization of the myocytes. Experimental activities have shown that TWA on the ECG is a manifestation of an underlying alternation of long and short action potential durations (APDs), the so called APD-alternans, of cardiac myocytes in the myocardium. Understanding the mechanism of APDs-alternans is the first step for preventing them to occur. In order to investigate these mechanisms it’s very important to understand that the biological systems are complex systems and their macroscopic properties arise from the nonlinear interactions among the parts. The whole is greater than the sum of the parts, and it cannot be understood only by studying the single parts. In this sense the heart is a complex nonlinear system and its way of working follows nonlinear dynamics; alternans also, they are a manifestation of a phenomenon typical in nonlinear dynamical systems, called “period-dubling bifurcation”. Over the past decade, it has been demonstrated that electrical alternans in cardiac tissue is an important marker for the development of ventricular fibrillation and a significant predictor for mortality. It has been observed that acute exposure to low concentration of calcium does not decrease the magnitude of alternans and sustained ventricular Fibrillation (VF) is still easily induced under these condition. However with prolonged exposure to low concentration of calcium, alternans disappears, but VF is still inducible. This work is based on this observation and tries to make it clearer. The aim of this thesis is investigate the effect of hypocalcemia spatial alternans and VF doing experiments with canine hearts and perfusing them with a solution with physiological ionic concentration and with a solution with low calcium concentration (hypocalcemia); in order to investigate the so called memory effect, the experimental activity was modified during the way. The experiments were performed with the optical mapping technique, using voltage-sensitive dye, and a custom made Java code was used in post-processing. Finding the Nolasco and Dahlen’s criterion [8] inadequate for the prediction of alternans, and takin into account the experimental results, another criterion, which consider the memory effect, has been implemented. The implementation of this criterion could be the first step in the creation of a method, AP-based, discriminating who is at risk if developing VF. This work is divided into four chapters: the first is a brief presentation of the physiology of the heart; the second is a review of the major theories and discovers in the study of cardiac dynamics; the third chapter presents an overview on the experimental activity and the optical mapping technique; the forth chapter contains the presentation of the results and the conclusions.
Resumo:
Background Decreased exercise capacity, and reduction in peak oxygen uptake are present in most patients affected by hypertrophic cardiomyopathy (HCM) . In addition an abnormal blood pressure response during a maximal exercise test was seen to be associated with high risk for sudden cardiac death in adult patients affected by HCM. Therefore exercise test (CPET) has become an important part of the evaluation of the HCM patients, but data on its role in patients with HCM in the pediatric age are quite limited. Methods and results Between 2004 and 2010, using CPET and echocardiography, we studied 68 children (mean age 13.9 ± 2 years) with HCM. The exercise test was completed by all the patients without adverse complications. The mean value of achieved VO2 max was 31.4 ± 8.3 mL/Kg/min which corresponded to 77.5 ± 16.9 % of predicted range. 51 patients (75%) reached a subnormal value of VO2max. On univariate analysis the achieved VO2 as percentage of predicted and the peak exercise systolic blood pressure (BP) Z score were inversely associated with max left ventricle (LV) wall thickness, with E/Ea ratio, and directly related with Ea and Sa wave velocities No association was found with the LV outflow tract gradient. During a mean follow up of 2.16 ± 1.7 years 9 patients reached the defined clinical end point of death, transplantation, implanted cardioverter defibrillator (ICD) shock, ICD implantation for secondary prevention or myectomy. Patients with peak VO2 < 52% or with peak systolic BP Z score < -5.8 had lower event free survival at follow up. Conclusions Exercise capacity is decreased in patients with HCM in pediatric age and global ventricular function seems being the most important determinant of exercise capacity in these patients. CPET seems to play an important role in prognostic stratification of children affected by HCM.
Resumo:
Lo scopo di questo studio è di valutare il significato prognostico dell'elettrocardiogramma standard in un'ampia casistica di pazienti affetti da cardiomiopatia ipertrofica. In questo studio multicentrico sono stati considerati 841 pazienti con cardiomiopatia ipertrofica (66% uomini, età media 48±17 anni) per un follow-up di 7.1±7.1 anni, per ognuno è stato analizzato il primo elettrocardiogramma disponibile. I risultati hanno dimostrato come fattori indipendentemente correlati a morte cardiaca improvvisa la sincope inspiegata (p 0.004), il sopraslivellamento del tratto ST e/o la presenza di onde T positive giganti (p 0.048), la durata del QRS >= 120 ms (p 0.017). Sono stati costruiti due modelli per predire il rischio di morte improvvisa: il primo basato sui fattori di rischio universalmente riconosciuti (spessore parietale >= 30 mm, tachicardie ventricolari non sostenute all'ECG Holter 24 ore, sincope e storia familiare di morte improvvisa) e il secondo con l'aggiunta delle variabili sopraslivellamento del tratto ST/onde T positive giganti e durata del QRS >= 120 ms. Entrambi i modelli stratificano i pazienti in base al numero dei fattori di rischio, ma il secondo modello risulta avere un valore predittivo maggiore (chi-square da 12 a 22, p 0.002). In conclusione nella cardiomiopatia ipertrofica l'elettrocardiogramma standard risulta avere un valore prognostico e migliora l'attuale modello di stratificazione per il rischio di morte improvvisa.
Resumo:
In patients with ventricular tachycardia (VT) and a history of myocardial infarction, intervention with an implantable cardioverter defibrillator (ICD) can prevent sudden cardiac death and thereby reduce total mortality. However, ICD shocks are painful and do not provide complete protection against sudden cardiac death. We assessed the potential benefit of catheter ablation before implantation of a cardioverter defibrillator.
Resumo:
This paper is the fourth in a series of reviews that will summarize available data and critically discuss the potential role of lung-function testing in infants with acute neonatal respiratory disorders and chronic lung disease of infancy. The current paper addresses information derived from tidal breathing measurements within the framework outlined in the introductory paper of this series, with particular reference to how these measurements inform on control of breathing. Infants with acute and chronic respiratory illness demonstrate differences in tidal breathing and its control that are of clinical consequence and can be measured objectively. The increased incidence of significant apnea in preterm infants and infants with chronic lung disease, together with the reportedly increased risk of sudden unexplained death within the latter group, suggests that control of breathing is affected by both maturation and disease. Clinical observations are supported by formal comparison of tidal breathing parameters and control of breathing indices in the research setting.
Resumo:
QUESTIONS UNDER STUDY: Alcohol ablation (AA) of the septum has been introduced as new therapy in hypertrophic cardiomyopathy (HCM). It was feared that iatrogenic myocardial infarction due to AA may induce re-entry tachyarrhythmias and increase sudden cardiac death. METHODS AND RESULTS: Twenty-four patients (mean age 52 years) underwent successful AA. Clinical follow-up (FU) ranged from 0.3 to 0.7 years (mean 2.8). One patient died (suicide) 4 years after AA. Left ventricular (LV) outflow gradient (peak-to-peak) decreased (median) after AA from 43 (IQR 25 to 4) mmHg to 1 (IQR 0 to 12) mmHg (rest) (p <0.001) and from 130 (IQR 75 to 165) mmHg to 13 (IQR 0 to 31) mmHg (postextrasystolic) (p <0.001). Transient AV block occurred in 22% (5/24) necessitating temporary pacing. A permanent pacemaker was implanted in 4% (1/24). NYHA-class was 2.5 (IQR 2.0 to 3.0) before and 1.5 (IQR 1.3 to 2.0) (p <0.001) after AA. During FU, 2 pacemakers were implanted due to bradycardia (no AV block). A right bundle branch block was found in 13% (2/24) before and 46 % (11/24) after AA (p = 0.003). Non-sustained ventricular tachycardia (NSVT) was observed in 13% (2/16) before and 22% (5/23) (p = 0.46) after AA. Two patients required ICD implantation. CONCLUSIONS: Long-term FU is excellent in HCM after AA. The pressure gradient drops below 25 mm Hg in 95% (23/24) of all patients. Transient AV block occurs in 22% (5/24), but permanent pacemaker implantation is rarely needed (13%, 2/24). Severe NSVT occurs in 13% (2/16) before and 22% (5/23) after AA but ICD implantation is only occasionally required.
Resumo:
During recent years, resting heart rate was not considered as a cardiovascular risk factor. However, new evidences have showed that resting heart rate is an important prognostic factor for sudden cardiac death and heart failure in the general population, and especially among patients with known cardiac disease. Interestingly, resting heart rate not only predicts cardiac mortality but also all-cause mortality. The most common pathophysiological explanation is related to the fact that increased heart rate increases myocardial oxygen consumption and in parallel reduces coronary blood flow (reduction in the diastolic duration).
Resumo:
BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an important cause of sudden death in young adults. On the basis of histopathological findings its pathogenesis may involve both a genetic origin and an inflammatory process. Bartonella henselae may cause endomyocarditis and was detected in myocardium from a young male who succumbed to sudden cardiac death. HYPOTHESIS: We hypothesized that chronic infection with Bartonella henselae could contribute to the pathogenesis of ARVC. METHODS: We investigated sera from 49 patients with ARVC for IgG antibodies to Bartonella henselae. In this study, 58 Swiss blood donors tested by the same method served as controls. RESULTS: Six patients with ARVC (12%) had positive (>1:256) IgG titres in the immunofluorescence test with Bartonella henselae. In contrast, only 1 elevated titre was found in 58 controls (p < or = 0.05). Interestingly, all patients with increased titres had no familial occurrence of ARVC. CONCLUSIONS: Further studies in larger patient cohorts seem justified to investigate a possible causal link between chronic Bartonella henselae and ARVC, in particular its sporadic (nonfamilial) form.
Resumo:
A 19-year-old man suffered a cardiac arrest during a promenade with his friends. Cardiac resuscitation was started immediately. Anamnesis uncovered that the father as well as a cousin of the patient suffered from myotonic dystrophy (MD). Follow-up ECG monitoring showed intercurrent III degree AV-block as well as several asymptomatic episodes of ventricular tachycardias, atrial flutter with changing conduction and atrial fibrillation. Neuromuscular testing and genetic analyses confirmed the diagnosis of a myotonic dystrophy. Myotonic dystrophy (MD) is a chronic, slowly progressing, autosomal dominant inherited multisystemic disease.The clinical presentation is characterized by wasting of the muscles with delayed relaxation, cataracts and endocrine changes. MD is associated with both cardiac conduction disturbances and structural heart abnormalities. Electrocardiographic abnormalities include conduction disturbances or tachyarrhythmias. This case illustrates that potentially lethal arrhythmias inducing sudden cardiac death may occur in MD patients even in the absence of neurologic symptoms characterizing the systemic illness.
Resumo:
Implantable Cardioverter Defibrillator (ICD) implantation is the only established therapy for primary or secondary prevention of sudden cardiac death in patients with Hypertrophic Cardiomyopathy (HCM). Ineffectiveness of shock therapy for the termination of potentially fatal ventricular arrhythmias in ICD recipients is rare in the presence of appropriate arrhythmia detection by the device. We report the case of a 48-year-old woman with HCM and a single chamber ICD, who received five inefficient high-energy (35 Joules) shocks for the termination of an appropriately detected episode of Ventricular Tachycardia (VT). The episode was safely terminated with a subsequent application of Antitachycardia Pacing (ATP) by the device. At the following ICD control, an acceptable defibrillation threshold was detected.
Resumo:
Alteration of neurohormonal homeostasis is a hallmark of the pathophysiology of chronic heart failure (CHF). In particular, overactivation of the renin-angiotensin-aldosterone system and the sympathetic catecholaminergic system is consistently observed. Chronic overactivation of these hormonal pathways leads to a detrimental arrhythmogenic remodeling of cardiac tissue due to dysregulation of cardiac ion channels. Sudden cardiac death resulting from ventricular arrhythmias is a major cause of mortality in patients with CHF. All the drug classes known to reduce mortality in patients with CHF are neurohormonal blockers. The aim of this review was to provide an overview of how cardiac ion channels are regulated by hormones known to play a central role in the pathogenesis of CHF.