980 resultados para Subtropical Climate
Resumo:
Background: There is overwhelming scientific evidence that human activities have changed and will continue to change the climate of the Earth. Eco-environmental health, which refers to the interdependencies between ecological systems and population health and well-being, is likely to be significantly influenced by climate change. The aim of this study was to examine perceptions from government stakeholders and other relevant specialists about the threat of climate change, their capacity to deal with it, and how to develop and implement a framework for assessing vulnerability of eco-environmental health to climate change.---------- Methods: Two focus groups were conducted in Brisbane, Australia with representatives from relevant government agencies, non-governmental organisations, and the industry sector (n = 15) involved in the discussions. The participants were specialists on climate change and public health from governmental agencies, industry, and nongovernmental organisations in South-East Queensland.---------- Results: The specialists perceived climate change to be a threat to eco-environmental health and had substantial knowledge about possible implications and impacts. A range of different methods for assessing vulnerability were suggested by the participants and the complexity of assessment when dealing with multiple hazards was acknowledged. Identified factors influencing vulnerability were perceived to be of a social, physical and/or economic nature. They included population growth, the ageing population with associated declines in general health and changes in the vulnerability of particular geographical areas due to for example, increased coastal development, and financial stress. Education, inter-sectoral collaboration, emergency management (e.g. development of early warning systems), and social networks were all emphasised as a basis for adapting to climate change. To develop a framework, different approaches were discussed for assessing eco-environmental health vulnerability, including literature reviews to examine the components of vulnerability such as natural hazard risk and exposure and to investigate already existing frameworks for assessing vulnerability.---------- Conclusion: The study has addressed some important questions in regard to government stakeholders and other specialists’ views on the threat of climate change and its potential impacts on eco-environmental health. These findings may have implications in climate change and public health decision-making.
Resumo:
Background: The transmission of hemorrhagic fever with renal syndrome (HFRS) is influenced by climatic variables. However, few studies have examined the quantitative relationship between climate variation and HFRS transmission. ---------- Objective: We examined the potential impact of climate variability on HFRS transmission and developed climate-based forecasting models for HFRS in northeastern China. ---------- Methods: We obtained data on monthly counts of reported HFRS cases in Elunchun and Molidawahaner counties for 1997–2007 from the Inner Mongolia Center for Disease Control and Prevention and climate data from the Chinese Bureau of Meteorology. Cross-correlations assessed crude associations between climate variables, including rainfall, land surface temperature (LST), relative humidity (RH), and the multivariate El Niño Southern Oscillation (ENSO) index (MEI) and monthly HFRS cases over a range of lags. We used time-series Poisson regression models to examine the independent contribution of climatic variables to HFRS transmission. ----------- Results: Cross-correlation analyses showed that rainfall, LST, RH, and MEI were significantly associated with monthly HFRS cases with lags of 3–5 months in both study areas. The results of Poisson regression indicated that after controlling for the autocorrelation, seasonality, and long-term trend, rainfall, LST, RH, and MEI with lags of 3–5 months were associated with HFRS in both study areas. The final model had good accuracy in forecasting the occurrence of HFRS. ---------- Conclusions: Climate variability plays a significant role in HFRS transmission in northeastern China. The model developed in this study has implications for HFRS control and prevention.
Resumo:
Bactrocera tryoni is a polyphagous fruit fly, originally endemic to tropical and subtropical coastal eastern Australia, but now also widely distributed in temperate eastern Australia. In temperate parts of its range, B. tryoni populations show distinct seasonal peaks driven by changing seasonal climates, especially changing temperature. In contrast to temperate areas, the seasonal phenology of B. tryoni in subtropical and tropical parts of its range is poorly documented and the role of climate unknown. Using a large, historical (1940s and 1950s) fruit fly trapping data set, we present the seasonal phenology of B. tryoni at nine sites across Queensland for multiple (two to seven) years per site. We correlate monthly trap data for each site with monthly weather averages (temperature, rainfall and relative humidity) to investigate climatic influences. We also correlate observed population data with predicted population data generated by an existing B. tryoni population model. Supporting predictions from climate driven models, B. tryoni did show year-round breeding at most Queensland sites. However, contrary to predictions, there was a common pattern of a significant population decline in autumn and winter, followed by a rapid population increase in August and then one or more distinct peaks of abundance in spring and summer. Mean monthly fly abundance was significantly different across sites, but was not correlated with altitudinal, latitudinal or longitudinal gradients. There were very few significant correlations between monthly fly population size and weather variables for eight of the nine sites. For the southern site of Gatton fly population abundance was correlated with temperature. Results suggest that while climate factors may be influencing B. tryoni populations in southern subtropical Queensland, they appear to be having only minor or no influence in northern sub-tropical and tropical Queensland. In the discussion we focus on the role of other factors, particularly larval host plant availability, as likely drivers of B. tryoni abundance in tropical and subtropical parts of its range.
Resumo:
In June 2009 the Centre for Subtropical Design at the Queensland University of Technology conducted a design charrette to research design concepts for liveable subtropical neighbourhoods characterised by higher-density, mixed-use, family orientated housing. Subsequent analysis of the proposed designs evaluated how well these typologies support economic, environmental and social sustainability. The study was led by Ms Rosemary Kennedy, Director of the Centre for Subtropical Design and QUT School of Design Adjunct Professor Peter Richards, Chair of the Centre for Subtropical Design Board and director of Deicke Richards Architects and Urban Designers.
Resumo:
In June 2009 the Centre for Subtropical Design at the Queensland University of Technology conducted a design charrette to research design concepts for liveable subtropical neighbourhoods characterised by higher-density, mixed-use, family orientated housing. Subsequent analysis of the proposed designs evaluated how well these typologies support economic, environmental and social sustainability. The study was led by Ms Rosemary Kennedy, Director of the Centre for Subtropical Design and QUT School of Design Adjunct Professor Peter Richards, Chair of the Centre for Subtropical Design Board and director of Deicke Richards Architects and Urban Designers.
Resumo:
The public transport corridor bordering the study site runs NW to SE and is perceived as a source of noise and pollution. The key urban planning strategies adopted by this team were: • Acoustic separation from transport corridor noise source, • A regular grid pattern of urban blocks, and • A clear hierarchy of accessible open space throughout the development.
Resumo:
The case study site is physically disconnected from its surrounding community by the rail corridor and future bus lanes and is unlikely to be able to sustain its own commercial retail centre. As a result, it may also be socially disconnected from surrounding suburbs. However, it does offer proximity and access to an extensive „natural‟ area, and this is seen as key opportunity for the proposed development to develop a strong relationship with surrounding suburbs...
Resumo:
The Centre for Subtropical Design has prepared this submission to assist the Gold Coast City Council to finalise a plan and detailed design guidelines for the Urban Plaza Zone of Surfers Paradise Foreshore Redevelopment Masterplan which will create a public open space ‘alive’ with the quality appropriate to a place which is both a local centre and an international destination. This review has been informed by the two over-arching values identified as characteristics of a subtropical place and people’s connection to it: A sense of openness and permeability, and Engagement with the natural environment. The existing qualities of the foreshore area proposed as the Urban Plaza Zone, reflect these subtropical place values, and are integral to the Surfers Paradise identity: Seamless visual and spatial access to the beach and sea, Permeable interface between beach and built zones provided by beach planting and shade to sand by Pandanus, A shade zone mediating beach and linear promenade, road and commercial zones, enabling a variety of social and visual experiences, on soft and hard finishes, and A lively, constantly moving shared road and pedestrian way catering for events and day to day activities with visual access to beach and shaded areas. The Centre for Subtropical Design commends the Gold Coast City Council on preparing a plan for a public open space that is a contemporary departure from the adhoc basis of development that has occurred, in that it will make this area more accessible. However, the proposed plan seems to be working too hard in terms of ‘program’. While providing an identifiable interruption in the linear extent of the Foreshore, the lack of continuity of design in terms of both hardscaping (such as perpendicular paving elements) and softscaping (such as tree selections) may contribute to a lack of definition for the entire Foreshore as a place that mediates, along its length, between sea and land. Providing a hard edge to a beach character of soft and planted transitional elements needs to balance the proposed visual and physical barrier with the need for perceived and actual easy access. The Surfers Paradise identity needs strengthening through attention to planting for shade, materials, particularly selection of paving colours, and stronger delineation of the linear nature of the Foreshore. The Urban Plaza zone is an appropriate interruption to the continuous planting, however the link from the commercial zone overtakes the public and beach zone. A more seamless transition from shop to sea, better integration of the roadway and pedestrian zone and improved physical transition from concrete to sand is recommended. Built form solutions must be robust and designed with the subtropical design principles and the Surfers Paradise identity as underpinning parameters for a lasting and memorable public open space.
Resumo:
On the case study site, using these strategies, the site density achieved was approximately 180 dwellings per hectare. According to ASK consulting engineers‟ acoustic report (in Ecolateral‟s report) the design gives solid consideration to the environmental noise issues associated with the site. The subject structure not only provides significant shielding of transport corridor noise to the suburb, it also minimises the potential for adverse impact on residential amenity within the building itself...
Resumo:
Daylighting in tropical and sub-tropical climates presents a unique challenge that is generally not well understood by designers. In a sub-tropical region such as Brisbane, Australia the majority of the year comprises of sunny clear skies with few overcast days and as a consequence windows can easily become sources of overheating and glare. The main strategy in dealing with this issue is extensive shading on windows. However, this in turn prevents daylight penetration into buildings often causing an interior to appear gloomy and dark even though there is more than sufficient daylight available. As a result electric lighting is the main source of light, even during the day. Innovative daylight devices which redirect light from windows offer a potential solution to this issue. These devices can potentially improve daylighting in buildings by increasing the illumination within the environment decreasing the high contrast between the window and work regions and deflecting potentially glare causing sunlight away from the observer. However, the performance of such innovative daylighting devices are generally quantified under overcast skies (i.e. daylight factors) or skies without sun, which are typical of European climates and are misleading when considering these devices for tropical or sub-tropical climates. This study sought to compare four innovative window daylighting devices in RADIANCE; light shelves, laser cut panels, micro-light guides and light redirecting blinds. These devices were simulated in RADIANCE under sub-tropical skies (for Brisbane) within the test case of a typical CBD office space. For each device the quantity of light redirected and its distribution within the space was used as the basis for comparison. In addition, glare analysis on each device was conducted using Weinold and Christoffersons evalglare. The analysis was conducted for selected hours for a day in each season. The majority of buildings that humans will occupy in their lifetime are already constructed, and extensive remodelling of most of these buildings is unlikely. Therefore the most effective way to improve daylighting in the near future will be through the alteration existing window spaces. Thus it will be important to understand the performance of daylighting systems with respect to the climate it is to be used in. This type of analysis is important to determine the applicability of a daylighting strategy so that designers can achieve energy efficiency as well the health benefits of natural daylight.
Resumo:
Although interests in assessing the relationship between temperature and mortality have arisen due to climate change, relatively few data are available on lag structure of temperature-mortality relationship, particularly in the Southern Hemisphere. This study identified the lag effects of mean temperature on mortality among age groups and death categories using polynomial distributed lag models in Brisbane, Australia, a subtropical city, 1996-2004. For a 1 °C increase above the threshold, the highest percent increase in mortality on the current day occurred among people over 85 years (7.2% (95% CI: 4.3%, 10.2%)). The effect estimates among cardiovascular deaths were higher than those among all-cause mortality. For a 1 °C decrease below the threshold, the percent increases in mortality at 21 lag days were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%) for people aged over 85 years and with cardiovascular diseases, respectively. These findings may have implications for developing intervention strategies to reduce and prevent temperature-related mortality.
Resumo:
The design of the Kyoto Protocol renders it incapable of effectively responding to the problem of anthropogenic climate change. Therefore, this article explores the opportunity to construct a new, principled legal approach to respond to climate change that is premised on nationally derived legal responses. To do so, this article considers the theoretical foundation of the international legal response to climate change – Hardin's "The Tragedy of the Commons‟ – and the systemic design faults of the Kyoto Protocol. This article also suggests four principles – a judicious mix of legal instruments, flexibility, intrinsic legal coherence, and quantifiable and achievable targets for the reduction of greenhouse gas intensity – that are necessary to guide the creation of a nationally derived legal response to climate change. This approach is intended to provide the catalyst for new bilateral and multilateral arrangements that can, with the passing of time, generate sufficient momentum to drive the creation of a new and effective cooperative international legal framework to mitigate anthropogenic climate change.
Resumo:
We assessed the effect of biochar incorporation into the soil on the soil-atmosphere exchange of the greenhouse gases (GHG) from an intensive subtropical pasture. For this, we measured N2O, CH4 and CO2 emissions with high temporal resolution from April to June 2009 in an existing factorial experiment where cattle feedlot biochar had been applied at 10 t ha-1 in November 2006. Over the whole measurement period, significant emissions of N2O and CO2 were observed, whereas a net uptake of CH4 was measured. N2O emissions were found to be highly episodic with one major emission pulse (up to 502 µg N2O-N m-2 h 1) following heavy rainfall. There was no significant difference in the net flux of GHGs from the biochar amended vs. the control plots. Our results demonstrate that intensively managed subtropical pastures on ferrosols in northern New South Wales of Australia can be a significant source of GHG. Our hypothesis that the application of biochar would lead to a reduction in emissions of GHG from soils was not supported in this field assessment. Additional studies with longer observation periods are needed to clarify the long term effect of biochar amendment on soil microbial processes and the emission of GHGs under field conditions.