994 resultados para Springer, Katharina B
Resumo:
Farnesol (FOH) is a nonsterol isoprenold produced by dephosphorylanon of farnesyl pyrophosphate a catabolite of the cholesterol biosynthetic pathway These isoprenoids inhibit proliferation and induce apoptosis Here we show that Aspergillus nidulans MA encoding the apoptosis-Inducing factor (AIF)-like mitochondrial oxidoreductase plays a role in the function of the mitochondrial Complex I Additionally we demonstrated that ndeA B and ndiA encode external and internal alternative NADH dehydrogenases respectively that have a function in FOH resistance When exposed to FOH the Delta aifA and Delta ndeA strains have increased ROS production while Delta ndeB Delta ndeA Delta ndeB and Andul mutant strains showed the same ROS accumulation than in the absence of FOH We observed several compensatory mechanisms affecting the differential survival of these mutants to FOH (C) 2010 Elsevier Inc All rights reserved
Resumo:
We evaluated the ability of microemulsions containing medium-chain glycerides as penetration enhancers to increase the transdermal delivery of lipophilic (progesterone) and hydrophilic (adenosine) model drugs as well as the effects of an increase in surfactant blend concentration on drug transdermal delivery. Microemulsions composed of polysorbate 80, medium-chain glycerides, and propylene glycol (1:1:1, w/w/w) as surfactant blend, myvacet oil as the oily phase, and water were developed. Two microemulsions containing different concentrations of surfactant blend but similar water/oil ratios were chosen; ME-lo contained a smaller concentration of surfactant than ME-hi (47:20:33 and 63:14:23 surfactant/oil/water, w/w/w). Although in vitro progesterone and adenosine release from ME-lo and ME-hi was similar, their transdermal delivery was differently affected. ME-lo significantly increased the flux of progesterone and adenosine delivered across porcine ear skin (4-fold or higher, p < 0.05) compared to progesterone solution in oil (0.05 +/- 0.01 mu g/cm(2)/h) or adenosine in water (no drug was detected in the receptor phase). The transdermal flux of adenosine, but not of progesterone, was further increased (2-fold) by ME-hi, suggesting that increases in surfactant concentration represent an interesting strategy to enhance transdermal delivery of hydrophilic, but not of lipophilic, compounds. The relative safety of the microemulsions was assessed in cultured fibroblasts. The cytotoxicity of ME-lo and ME-hi was significantly smaller than sodium lauryl sulfate (considered moderate-to-severe irritant) at same concentrations (up to 50 mu g/mL), but similar to propylene glycol (regarded as safe), suggesting the safety of these formulations.
Resumo:
We investigated the effects of the dietary pigment chlorophyll b (CLb) on cisplatin (cDDP)-induced oxidative stress and DNA damage, using the comet assay in mouse peripheral blood cells and the micronucleus (MN) test in bone marrow and peripheral blood cells. We also tested for thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) in liver and kidney tissues, as well as catalase (CAT) activity and GSH in total blood. CLb (0.2 and 0.5 mg/kg b.w.) was administrated by gavage every day for 13 days. On the 14th day of the experiment, 6 mg/kg cDDP or saline was delivered intraperitoneally. Treatment with cDDP led to a significant decrease in DNA migration and an increase in MN frequency in both cell types, bone marrow and peripheral blood cells. In the kidneys of mice treated with cDDP, TBARS levels were increased, whereas GSH levels were depleted in kidney and liver. In mice that were pretreated with CLb and then treated with cDDP, TBARS levels maintained normal concentrations and GSH did not differ from cDDP group. The improvement of oxidative stress biomarkers after CLb pre-treatment was associated with a decrease in DNA damage, mainly for the highest dose evaluated. Furthermore, CLb also slightly reduced the frequency of chromosomal breakage and micronucleus formation in mouse bone marrow and peripheral blood cells. These results show that pre-treatment with CLb attenuates cDDP-induced oxidative stress, chromosome instability, and lipid peroxidation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Genetic factors influence whole blood lead (Pb-B) concentrations in lead exposed subjects. This study aimed at examining the combined effects (haplotype analysis) of three polymorphisms (BsmI, ApaI and FokI) in vitamin D receptor (VDR) gene on Pb-B and on the concentrations of lead in plasma (Pb-P), which is more relevant to lead toxicity, in 150 environmentally exposed subjects. Genotypes were determined by RFLP, and Pb-P and Pb-B were determined by inductively coupled plasma mass spectrometry and by graphite furnace atomic absorption spectrometry, respectively. Subjects with the bb (BsmI polymorphism) or ff (FokI polymorphism) genotypes have lower B-Pb than subjects in the other genotype groups. Subjects with the aa (ApaI polymorphism) or ff genotypes have lower P-Pb than subjects in the other genotype groups. Lower Pb-P, Pb-B, and %Pb-P/Pb-B levels were found in subjects with the haplotype combining the a, b, and f alleles for the ApaI, BsmI, and FokI polymorphisms, respectively, compared with the other haplotype groups, thus suggesting that VDR haplotypes modulate the circulating levels of lead in exposed subjects.
Resumo:
Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both C. albicans and C. tropicalis, but phospholipase activity was noted only in C. albicans. In vitro resistance to antifungals was verified in both species, but C. tropicalis appears to be more resistant to the tested antifungals than C. albicans.
Resumo:
The present study was designed to determine the prevalence and extended-spectrum beta-lactamase (ESBL) types in clinical isolates of Klebsiella spp. at a university hospital located in the Brazilian southern region (Ribeirao Preto, Sao Paulo) as well as their antibiotic susceptibility and genetic profiles. This study included 147 non-repeat Klebsiella spp. isolates collected from January to June 2000, of which 23 K. pneumoniae and 8 K. oxytoca were selected as ESBL producers by using the Oxoid combination disk method and Etest ESBL strip. beta-lactamases were characterized by IEF, PCR and sequencing assays using primers for ESBL genes. Antibiotic susceptibility was evaluated by MicroScan system. Dissemination of two major clones of ESBL-producing Klebsiella spp. occurred in the hospital. According to the results obtained in this study there was a clonal spread of CTX-M-producing K. oxytoca in five clinics and dissemination of ESBL-producing K. pneumoniae in the nursery and pediatrics wards.
Resumo:
The aim of present study was to verify the in vitro antitumor activity of a ruthenium complex, cis-(dichloro)tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) toward different tumor cell lines. The antitumor studies showed that ruthenium(III) complex presents a relevant cytotoxic activity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) cell lines and a very low cytotoxicity toward human peripheral blood mononuclear cells. The ruthenium(III) complex decreased the fraction of tumor cells in G0/G1 and/or G2-M phases, indicating that this compound may act on resting/early entering G0/G1 cells and/or precycling G2-M cells. The cytotoxic activity of a high concentration (2 mg mL(-1)) of cis-[RuCl(2)(NH(3))(4)]Cl toward Jurkat cells correlated with an increased number of annexin V-positive cells and also the presence of DNA fragmentation, suggesting that this compound induces apoptosis in tumor cells. The development of new antineoplastic medications demands adequate knowledge in order to avoid inefficient or toxic treatments. Thus, a mechanistic understanding of how metal complexes achieve their activities is crucial to their clinical success and to the rational design of new compounds with improved potency.
Resumo:
Studies on the therapeutic potential of venom peptides have significantly advanced the development of new peptide drugs. A good example is captopril, a synthetic peptide drug, which acts as an anti-hypertensive and potentiating bradykinin, inhibiting the angiotensin-converting enzyme, whose precursor was isolated from the venom of Bothrops jararacussu. The natriuretic peptide (NPs) family comprises three members, ANP (atrial natriuretic peptide), BNP (B-type natriuretic peptide) and CNP (C-type natriuretic peptide), and has an important role in blood pressure regulation and electrolyte homeostasis. In this study, we describe, for the first time, the isolation and characterization of a novel natriuretic-like peptide (Coa_NP), isolated from Crotalus Oreganus abyssus venom. The peptide has 32 amino acids and its complete sequence is SKRLSNGCFGLKLDRIGAMSGLGCWRLINESK. The Coa_NP has an average molecular mass of 3510.98 Da and its amino acid sequence presents the loop region that is characteristic of natriuretic peptides (17 amino acids, NP domain consensus; CFGXXXDRIXXXSGLGC). Coa_NP is a natriuretic peptide of the ANP/BNP-like family, since the carboxy terminal region of CNP has its own NP domain. The functional experiments showed that Coa_NP produced biological effects similar to those of the other natriuretic peptides: (1) a dose-dependent decrease in mean arterial pressure; (2) significant increases in plasma nitrite levels, and (3) vasorelaxation in thoracic aortic rings that were pre-contracted with phenylephrine. The structural and biological aspects confirm Coa_NP as a natriuretic peptide isolated from snake venom, thus expanding the diversification of venom components.
Resumo:
Histoplasmosis is a pulmonary disease characterised by chronic granulomatous and suppurative inflammatory reactions caused by Histoplasma capsulatum. Regarding new therapies to control fungal infections, the aim of this study was to investigate whether pulmonary administration of leukotriene B(4) (LTB(4))-loaded microspheres (MS) could confer protection to 5-lipoxygenase knockout (5-LO(-/-)) mice infected by H. capsulatum. In this study, MS containing LTB4 were administered intranasally to mice infected by H. capsulatum. On Day 14 after the infection, fungal recovery from the lungs and histology were evaluated and inflammatory cytokines were measured. Pulmonary administration of LTB(4)-loaded MS was able to reduce fungal recovery from infected lungs. Production of important inflammatory cytokines related to host defence was augmented following MS administration to the lungs. Lung histology also showed that infected mice presented a clear reduction in the fungal burden following the pulmonary release of LTB4 from MS. Our study provides evidence that the proposed biodegradable microparticulate system, which can release LTB4 to the lungs, can be employed as therapy, enhancing the antimicrobial activity of host cells during histoplasmosis. (C) 2009 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
The goal of this study is to produce oleanolic acid derivatives by biotransformation process using Mucor rouxii and evaluate their antimicrobial activity against oral pathogens. The microbial transformation was carried out in shake flasks at 30A degrees C for 216 h with shaking at 120 rpm. Three new derivatives, 7 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, 7 beta,21 beta-dihydroxy-3-oxo-olean-12-en-28-oic acid, and 3 beta,7 beta,21 beta-trihydroxyolean-12-en-28-oic acid, and one know compound, 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, were isolated, and the structures were elucidated on the basis of spectroscopic analyses. The antimicrobial activity of the substrate and its transformed products was evaluated against five oral pathogens. Among these compounds, the derivative 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid displayed the strongest activity against Porphyromonas gingivalis, which is a primary etiological agent of periodontal disease. In an attempt to improve the antimicrobial activity of the derivative 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, its sodium salt was prepared, and the minimum inhibitory concentration against P. gingivalis was reduced by one-half. The biotransformation process using M. rouxii has potential to be applied to the production of oleanolic acid derivatives. Research and antimicrobial activity evaluation of new oleanolic acid derivatives may provide an important contribution to the discovery of new adjunct agents for treatment of dental diseases such as dental caries, gingivitis, and periodontitis.
Resumo:
The present study reports on the preparation and testing of a desoxycholate amphotericin B (D-AMB) sustained delivery system based on poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) polymeric blends (Nano-D-AMB) aimed at reducing the number of AMB administrations required to treat mycosis. BALB/c mice were infected with the yeast Paracoccidioides brasiliensis intravenously to mimic the chronic form of paracoccidioidomycosis. At 30 days post-infection, the animals were treated with Nano-D-AMB [6 mg/kg of encapsulated D-AMB, intraperitoneally (ip), interval of 72 h] or D-AMB (2 mg/kg, ip, interval of 24 h). Drug efficacy was investigated by the fungal burden recovery from tissues. Toxicity was assessed by renal and hepatic biochemical parameters, physical appearance of the animals and haematological investigation. The control groups used were non-infected and the infected mice mock treated with PBS. Nano-D-AMB presented results comparable to free D-AMB, with a marked antifungal efficacy. The Nano-D-AMB-treated group presented lower loss of body weight and absence of stress sign (piloerection and hypotrichosis) observed after D-AMB treatment. No renal [blood urea nitrogen (BUN), creatinine] or hepatic (pyruvic and oxalacetic glutamic transaminases) biochemical abnormalities were found. The micronucleus assay showed no significant differences in both the micronucleus frequency and percentage of polychromatic erythrocytes for Nano-D-AMB, indicating the absence of genotoxicity and cytotoxic effects. The D-AMB-coated PLGA-DMSA nanoparticle showed antifungal efficacy, fewer undesirable effects and a favourable extended dosing interval. Nano-D-AMB comprises an AMB formulation able to lessen the number of drug administrations. Further studies would elucidate whether Nano-D-AMB would be useful to treat systemic fungal infections such as paracoccidioidomycosis, candidiasis, aspergillosis and cryptococcosis.
Resumo:
The biocatalytic reduction of acetophenone derivatives was exploited by using algal biomass from Bostrychia radicans and B. tenella producing exclusively (S)-2-phenylethanols with high enantiomeric excess (> 99% ee). Bacterial populations associated with algal biomass were identified as the Bacillus genus. This report deals with the first investigations involving the use of marine bacteria associated with B. radicans and B. tenella marine algae for the biocatalytic reduction of acetophenone derivatives.
Resumo:
Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.
Resumo:
The supervised pattern recognition methods K-Nearest Neighbors (KNN), stepwise discriminant analysis (SDA), and soft independent modelling of class analogy (SIMCA) were employed in this work with the aim to investigate the relationship between the molecular structure of 27 cannabinoid compounds and their analgesic activity. Previous analyses using two unsupervised pattern recognition methods (PCA-principal component analysis and HCA-hierarchical cluster analysis) were performed and five descriptors were selected as the most relevants for the analgesic activity of the compounds studied: R (3) (charge density on substituent at position C(3)), Q (1) (charge on atom C(1)), A (surface area), log P (logarithm of the partition coefficient) and MR (molecular refractivity). The supervised pattern recognition methods (SDA, KNN, and SIMCA) were employed in order to construct a reliable model that can be able to predict the analgesic activity of new cannabinoid compounds and to validate our previous study. The results obtained using the SDA, KNN, and SIMCA methods agree perfectly with our previous model. Comparing the SDA, KNN, and SIMCA results with the PCA and HCA ones we could notice that all multivariate statistical methods classified the cannabinoid compounds studied in three groups exactly in the same way: active, moderately active, and inactive.
Resumo:
Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and can induce cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing or feminization in their hosts. Here, we report phylogenetic relationships of Wolbachia in tephritid fruit flies based on wsp gene sequences. We also report, for the first time, five distinct strains of Wolbachia in Bactrocera ascita sp. B. Four of the five Wolbachia strains found in this species were in the same groups as those found in other tephritid fruit flies, suggesting possible horizontal transmission of Wolbachia from other fruit flies into B. ascita sp. B. The unreliability of wsp-specific group primers demonstrated in this study suggests that these primers might be useful only for preliminary identification of Wolbachia. Final determination of group affiliation needs to be verified with wsp sequence data.