928 resultados para Spatial lag regression model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Megabenthos plays a major role in the overall energy flow on Arctic shelves, but information on megabenthic secondary production on large spatial scales is scarce. Here, we estimated for the first time megabenthic secondary production for the entire Barents Sea shelf by applying a species-based empirical model to an extensive dataset from the joint Norwegian? Russian ecosystem survey. Spatial patterns and relationships were analyzed within a GIS. The environmental drivers behind the observed production pattern were identified by applying an ordinary least squares regression model. Geographically weighted regression (GWR) was used to examine the varying relationship of secondary production and the environment on a shelfwide scale. Significantly higher megabenthic secondary production was found in the northeastern, seasonally ice-covered regions of the Barents Sea than in the permanently ice-free southwest. The environmental parameters that significantly relate to the observed pattern are bottom temperature and salinity, sea ice cover, new primary production, trawling pressure, and bottom current speed. The GWR proved to be a versatile tool for analyzing the regionally varying relationships of benthic secondary production and its environmental drivers (R² = 0.73). The observed pattern indicates tight pelagic? benthic coupling in the realm of the productive marginal ice zone. Ongoing decrease of winter sea ice extent and the associated poleward movement of the seasonal ice edge point towards a distinct decline of benthic secondary production in the northeastern Barents Sea in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy efficiency improvement has been a key objective of China’s long-term energy policy. In this paper, we derive single-factor technical energy efficiency (abbreviated as energy efficiency) in China from multi-factor efficiency estimated by means of a translog production function and a stochastic frontier model on the basis of panel data on 29 Chinese provinces over the period 2003–2011. We find that average energy efficiency has been increasing over the research period and that the provinces with the highest energy efficiency are at the east coast and the ones with the lowest in the west, with an intermediate corridor in between. In the analysis of the determinants of energy efficiency by means of a spatial Durbin error model both factors in the own province and in first-order neighboring provinces are considered. Per capita income in the own province has a positive effect. Furthermore, foreign direct investment and population density in the own province and in neighboring provinces have positive effects, whereas the share of state-owned enterprises in Gross Provincial Product in the own province and in neighboring provinces has negative effects. From the analysis it follows that inflow of foreign direct investment and reform of state-owned enterprises are important policy handles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Production Planning and Control (PPC) systems have grown and changed because of the developments in planning tools and models as well as the use of computers and information systems in this area. Though so much is available in research journals, practice of PPC is lagging behind and does not use much from published research. The practices of PPC in SMEs lag behind because of many reasons, which need to be explored. This research work deals with the effect of identified variables such as forecasting, planning and control methods adopted, demographics of the key person, standardization practices followed, effect of training, learning and IT usage on firm performance. A model and framework has been developed based on literature. Empirical testing of the model has been done after collecting data using a questionnaire schedule administered among the selected respondents from Small and Medium Enterprises (SMEs) in India. Final data included 382 responses. Hypotheses linking SME performance with the use of forecasting, planning and controlling were formed and tested. Exploratory factor analysis was used for data reduction and for identifying the factor structure. High and low performing firms were classified using a Logistic Regression model. A confirmatory factor analysis was used to study the structural relationship between firm performance and dependent variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasingly older population will most likely lead to greater demands on the health care system, as older age is associated with an increased risk of having acute and chronic conditions. The number of diseases or disabilities is not the only marker of the amount of health care utilized, as persons may seek hospitalization without a disease and/or illness that requires hospital healthcare. Hospitalization may pose a severe risk to older persons, as exposure to the hospital environment may lead to increased risks of iatrogenic disorders, confusion, falls and nosocomial infections, i.e., disorders that may involve unnecessary suffering and lead to serious consequences. Aims: The overall aim of this thesis was to describe and explore individual trajectories of cognitive development in relation to hospitalization and risk factors for hospitalization among older persons living in different accommodations in Sweden and to explore older persons' reasons for being transferred to a hospital. Methods: The study designs were longitudinal, prospective and descriptive, and both quantitative and qualitative methods were used. Specifically, latent growth curve modelling was used to assess the association of cognitive development with hospitalization. The Cox proportional hazards regression model was used to analyse factors associated with hospitalization risk overtime. In addition, an explorative descriptive design was used to explore how home health care patients experienced and perceived their decision to seek hospital care. Results: The most common reasons for hospitalization were cardiovascular diseases, which caused more than one-quarter of first hospitalizations among the persons living in ordinary housing and nursing home residents (NHRs). The persons who had been hospitalized had a lower mean level of cognitive performance in general cognition, verbal, spatial/fluid, memory and processing speed abilities compared to those who had not been hospitalized. Significantly steeper declines in general cognition, spatial/fluid and processing speed abilities were observed among the persons who had been hospitalized. Cox proportional hazards regression analysis showed that the number of diseases, number of drugs used, having experienced a fall and being assessed as malnourished according to the Mini Nutritional Assessment scale were related to an increased hospitalization risk among the NHRs. Among the older persons living in ordinary housing, the risk factors for hospitalization were related to marital status, i.e., unmarried persons and widows/widowers had a decreased hospitalization risk. In addition, among social factors, receipt of support from relatives was related to an increased hospitalization risk, while receipt of support from friends was related to a decreased risk. The number of illnesses was not associated with the hospitalization risk for older persons in any age group or for those of either sex, when controlling for other variables. The older persons who received home health care described different reasons for their decisions to seek hospital care. The underlying theme of the home health care patients’ perceptions of their transfer to a hospital involved trust in hospitals. This trust was shared by the home health care patients, their relatives and the home health care staff, according to the patients. Conclusions: This thesis revealed that middle-aged and older persons who had been hospitalized exhibited a steeper decline in cognition. Specifically, spatial/fluid, processing speed, and general cognitive abilities were affected. The steeper decline in cognition among those who had been hospitalized remained even after controlling for comorbidities. The most common causes of hospitalization among the older persons living in ordinary housing and in nursing homes were cardiovascular diseases, tumours and falls. Not only health-related factors, such as the number of diseases, number of drugs used, and being assessed as malnourished, but also social factors and marital status were related to the hospitalization risk among the older persons living in ordinary housing and in nursing homes. Some risk factors associated with hospitalization differed not only between the men and women but also among the different age groups. The information provided in this thesis could be applied in care settings by professionals who interact with older persons before they decide to seek hospital care. To meet the needs of an older population, health care systems need to offer the proper health care at the most appropriate level, and they need to increase integration and coordination among health care delivered by different care services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical association between a single nucleotide polymorphism (SNP) genotype and a quantitative trait in genome-wide association studies is usually assessed using a linear regression model, or, in the case of non-normally distributed trait values, using the Kruskal-Wallis test. While linear regression models assume an additive mode of inheritance via equi-distant genotype scores, Kruskal-Wallis test merely tests global differences in trait values associated with the three genotype groups. Both approaches thus exhibit suboptimal power when the underlying inheritance mode is dominant or recessive. Furthermore, these tests do not perform well in the common situations when only a few trait values are available in a rare genotype category (disbalance), or when the values associated with the three genotype categories exhibit unequal variance (variance heterogeneity). We propose a maximum test based on Marcus-type multiple contrast test for relative effect sizes. This test allows model-specific testing of either dominant, additive or recessive mode of inheritance, and it is robust against variance heterogeneity. We show how to obtain mode-specific simultaneous confidence intervals for the relative effect sizes to aid in interpreting the biological relevance of the results. Further, we discuss the use of a related all-pairwise comparisons contrast test with range preserving confidence intervals as an alternative to Kruskal-Wallis heterogeneity test. We applied the proposed maximum test to the Bogalusa Heart Study dataset, and gained a remarkable increase in the power to detect association, particularly for rare genotypes. Our simulation study also demonstrated that the proposed non-parametric tests control family-wise error rate in the presence of non-normality and variance heterogeneity contrary to the standard parametric approaches. We provide a publicly available R library nparcomp that can be used to estimate simultaneous confidence intervals or compatible multiplicity-adjusted p-values associated with the proposed maximum test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical regression analysis can be used to model time series. However, the assumption that model parameters are constant over time is not necessarily adapted to the data. In phytoplankton ecology, the relevance of time-varying parameter values has been shown using a dynamic linear regression model (DLRM). DLRMs, belonging to the class of Bayesian dynamic models, assume the existence of a non-observable time series of model parameters, which are estimated on-line, i.e. after each observation. The aim of this paper was to show how DLRM results could be used to explain variation of a time series of phytoplankton abundance. We applied DLRM to daily concentrations of Dinophysis cf. acuminata, determined in Antifer harbour (French coast of the English Channel), along with physical and chemical covariates (e.g. wind velocity, nutrient concentrations). A single model was built using 1989 and 1990 data, and then applied separately to each year. Equivalent static regression models were investigated for the purpose of comparison. Results showed that most of the Dinophysis cf. acuminata concentration variability was explained by the configuration of the sampling site, the wind regime and tide residual flow. Moreover, the relationships of these factors with the concentration of the microalga varied with time, a fact that could not be detected with static regression. Application of dynamic models to phytoplankton time series, especially in a monitoring context, is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tourist accommodation expenditure is a widely investigated topic as it represents a major contribution to the total tourist expenditure. The identification of the determinant factors is commonly based on supply-driven applications while little research has been made on important travel characteristics. This paper proposes a demand-driven analysis of tourist accommodation price by focusing on data generated from room bookings. The investigation focuses on modeling the relationship between key travel characteristics and the price paid to book the accommodation. To accommodate the distributional characteristics of the expenditure variable, the analysis is based on the estimation of a quantile regression model. The findings support the econometric approach used and enable the elaboration of relevant managerial implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Bovine tuberculosis (bTB) is a chronic infectious disease mainly caused by Mycobacterium bovis. Although eradication is a priority for the European authorities, bTB remains active or even increasing in many countries, causing significant economic losses. The integral consideration of epidemiological factors is crucial to more cost-effectively allocate control measures. The aim of this study was to identify the nature and extent of the association between TB distribution and a list of potential risk factors regarding cattle, wild ungulates and environmental aspects in Ciudad Real, a Spanish province with one of the highest TB herd prevalences. RESULTS We used a Bayesian mixed effects multivariable logistic regression model to predict TB occurrence in either domestic or wild mammals per municipality in 2007 by using information from the previous year. The municipal TB distribution and endemicity was clustered in the western part of the region and clearly overlapped with the explanatory variables identified in the final model: (1) incident cattle farms, (2) number of years of veterinary inspection of big game hunting events, (3) prevalence in wild boar, (4) number of sampled cattle, (5) persistent bTB-infected cattle farms, (6) prevalence in red deer, (7) proportion of beef farms, and (8) farms devoted to bullfighting cattle. CONCLUSIONS The combination of these eight variables in the final model highlights the importance of the persistence of the infection in the hosts, surveillance efforts and some cattle management choices in the circulation of M. bovis in the region. The spatial distribution of these variables, together with particular Mediterranean features that favour the wildlife-livestock interface may explain the M. bovis persistence in this region. Sanitary authorities should allocate efforts towards specific areas and epidemiological situations where the wildlife-livestock interface seems to critically hamper the definitive bTB eradication success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Logistic regression is a statistical tool widely used for predicting species’ potential distributions starting from presence/absence data and a set of independent variables. However, logistic regression equations compute probability values based not only on the values of the predictor variables but also on the relative proportion of presences and absences in the dataset, which does not adequately describe the environmental favourability for or against species presence. A few strategies have been used to circumvent this, but they usually imply an alteration of the original data or the discarding of potentially valuable information. We propose a way to obtain from logistic regression an environmental favourability function whose results are not affected by an uneven proportion of presences and absences. We tested the method on the distribution of virtual species in an imaginary territory. The favourability models yielded similar values regardless of the variation in the presence/absence ratio. We also illustrate with the example of the Pyrenean desman’s (Galemys pyrenaicus) distribution in Spain. The favourability model yielded more realistic potential distribution maps than the logistic regression model. Favourability values can be regarded as the degree of membership of the fuzzy set of sites whose environmental conditions are favourable to the species, which enables applying the rules of fuzzy logic to distribution modelling. They also allow for direct comparisons between models for species with different presence/absence ratios in the study area. This makes themmore useful to estimate the conservation value of areas, to design ecological corridors, or to select appropriate areas for species reintroductions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding what characterizes patients who suffer great delays in diagnosis of pulmonary tuberculosis is of great importance when establishing screening strategies to better control TB. Greater delays in diagnosis imply a higher chance for susceptible individuals to become infected by a bacilliferous patient. A Structured Additive Regression model is attempted in this study in order to potentially contribute to a better characterization of bacilliferous prevalence in Portugal. The main findings suggest the existence of significant regional differences in Portugal, with the fact of being female and/or alcohol dependent contributing to an increased delay-time in diagnosis, while being dependent on intravenous drugs and/or being diagnosed with HIV are factors that increase the chance of an earlier diagnosis of pulmonary TB. A decrease in 2010 to 77% on treatment success in Portugal underlines the importance of conducting more research aimed at better TB control strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the beginning of my thesis project, considering that some stocks are in overfishing status due to both high fishing effort and high level of juveniles in the catch, my main purpose was to understand how to contribute to improving the state of the fishery resources of the Mediterranean Sea. To mitigate the overfishing, the General Fisheries Commission for the Mediterranean (GFCM) adopted several Fishery Restricted Areas, which are geographically defined areas where some specific fishing activities are temporarily or permanently banned or restricted in order to reduce the exploitation patterns and conservation of specific stocks as well as of habitats and deep-sea ecosystems, including the Essential Fish Habitats (EFH) and the Vulnerable Marine Ecosystems (VME). Considering that GFCM established 3 Fisheries Restricted Areas (FRAs) in the Strait of Sicily (SoS) in 2016 aimed at protecting the nursery areas of the deep-water rose shrimp (DPS, Parapenaeus longirostris – Lucas, 1846) and the European hake (HKE, Merluccius merluccius – Linnaeus, 1758) to reduce the exploitation pattern of undersized species, in my thesis project I devoted myself to evaluate the effect of the FRAs on the status stock and the fishery performance using a spatial bio-economic model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify risk factors associated with post-operative temporomandibular joint dysfunction after craniotomy. The study sample included 24 patients, mean age of 37.3 ± 10 years; eligible for surgery for refractory epilepsy, evaluated according to RDC/TMD before and after surgery. The primary predictor was the time after the surgery. The primary outcome variable was maximal mouth opening. Other outcome variables were: disc displacement, bruxism, TMJ sound, TMJ pain, and pain associated to mandibular movements. Data analyses were performed using bivariate and multiple regression methods. The maximal mouth opening was significantly reduced after surgery in all patients (p = 0.03). In the multiple regression model, time of evaluation and pre-operative bruxism were significantly (p < .05) associated with an increased risk for TMD post-surgery. A significant correlation between surgery follow-up time and maximal opening mouth was found. Pre-operative bruxism was associated with increased risk for temporomandibular joint dysfunction after craniotomy.