1000 resultados para Somatostatin gene
Resumo:
Double-stranded RNA (dsRNA) induces an endogenous sequence-specific RNA degradation mechanism in most eukaryotic cells. The mechanism can be harnessed to silence genes in plants by expressing self-complementary single-stranded (hairpin) RNA in which the duplexed region has the same sequence as part of the target gene's mRNA. We describe a number of plasmid vectors for generating hairpin RNAs, including those designed for high-throughput cloning, and provide protocols for their use.
Resumo:
Motivation: Gene silencing, also called RNA interference, requires reliable assessment of silencer impacts. A critical task is to find matches between silencer oligomers and sites in the genome, in accordance with one-to-many matching rules (G-U matching, with provision for mismatches). Fast search algorithms are required to support silencer impact assessments in procedures for designing effective silencer sequences.Results: The article presents a matching algorithm and data structures specialized for matching searches, including a kernel procedure that addresses a Boolean version of the database task called the skyline search. Besides exact matches, the algorithm is extended to allow for the location-specific mismatches applicable in plants. Computational tests show that the algorithm is significantly faster than suffix-tree alternatives. © The Author 2010. Published by Oxford University Press. All rights reserved.
Resumo:
Recent studies of gene silencing in plants have revealed two RNA-mediated epigenetic processes, RNA-directed RNA degradation and RNA-directed DNA methylation. These natural processes have provided new avenues for developing high-efficiency, high-throughput technology for gene suppression in plants.
Resumo:
Genetic studies are revealing the pathway for RNA-mediated gene silencing. Short RNA molecules are the key, giving sequence specificity for RNA degradation and mediating communication within and between cells; these short RNAs are common to transcriptional and post-transcriptional silencing pathways. The expression of transgenes in plants varies between independent transformants and there are many examples where the transgenic trait is not expressed, or disappears in subsequent generations, despite the presence of the transgene. This loss of a trait, but not of the transgene, has become known as gene silencing and can take two forms, transcriptional or post-transcriptional. As their names imply, transcriptional gene silencing occurs when a transgene is not transcribed, whereas in post-transcriptional gene silencing, the transgene mRNA is produced but degraded before it is translated (reviewed in [1]). Both forms of silencing seem to be the result of inherent mechanisms for protecting plants against mobile or invading DNA — for example, transposable elements or the T-DNA of Agrobacterium — or RNA viruses. Plants are not alone in their capacity for transgene silencing; both forms of silencing occur in flies and fungi, where it is known as RIP or quelling, while nematodes exhibit post-transcriptional silencing, generally referred to as RNA interference (RNAi). A clearer picture of the mechanisms and relationships of the different types of transgene silencing is beginning to emerge from a number of recent studies [2], [3], [4], [5], [6], [7] and [8]. Some of these studies [2], [3], [4] and [5] have enhanced our understanding of the steps within the post-transcriptional silencing pathway, and others [6], [7] and [8] have demonstrated that the two forms of silencing may be mechanistically linked.
Resumo:
In plant cells, DICER-LIKE4 processes perfectly double-stranded RNA (dsRNA) into short interfering (si) RNAs, and DICER-LIKE1 generates micro (mi) RNAs from primary miRNA transcripts (pri-miRNA) that form fold-back structures of imperfectly dsRNA. Both si and miRNAs direct the endogenous endonuclease, ARGONAUTE1 to cleave complementary target single-stranded RNAs and either small RNA (sRNA)-directed pathway can be harnessed to silence genes in plants. A routine way of inducing and directing RNA silencing by siRNAs is to express self-complementary single-stranded hairpin RNA (hpRNA), in which the duplexed region has the same sequence as part of the target gene's mRNA. Artificial miRNA (amiRNA)-mediated silencing uses an endogenous pri-miRNA, in which the original miRNA/miRNA* sequence has been replaced with a sequence complementary to the new target gene. In this chapter, we describe the plasmid vector systems routinely used by our research group for the generation of either hpRNA-derived siRNAs or amiRNAs.
Resumo:
Posttranscriptional silencing (PTGS) in plants, nematodes, Drosophila, and perhaps all eukaryotes operates by sequence-specific degradation or translational inhibition of the target mRNA. These processes are mediated by duplexed RNA. In Drosophila and nematodes, double-stranded (ds)RNA or self-complementary RNA is processed into fragments of approximately 21 nt by Dicer-1 [1, 2]. These small interfering RNAs (siRNAs) serve as guides to target degradation of homologous single-stranded (ss)RNA [1, 3]. In some cases, the approximately 21 nt guide fragments derived from endogenous, imperfectly self-complementary RNAs cause translational inhibition of their target mRNAs, with which they have substantial, but not perfect sequence complementarity [4-6]. These small temporal RNAs (stRNAs) belong to a class of noncoding microRNAs (miRNAs), 20-24 nt in length, that are found in flies, plants, nematodes, and mammals [4, 6-12]. In nematodes, the Dicer-1 enzyme catalyzes the production of both siRNA and stRNA [2, 13-15]. Mutation of the Arabidopsis Dicer-1 homolog, CARPEL FACTORY (CAF), blocks miRNA production [1, 4, 16-18]. Here, we report that the same caf mutant does not block either PTGS or siRNA production induced by self-complementary hairpin RNA. This suggests either that this mutation only impairs miRNA formation or, more interestingly, that plants have two distinct dicer-like enzymes, one for miRNA and another for siRNAi production.
Resumo:
Recent studies of gene silencing in plants have revealed two RNA-mediated epigenetic processes, RNA-directed RNA degradation and RNA-directed DNA methylation. These natural processes have provided new avenues for developing high-efficiency, high-throughput technology for gene suppression in plants.
Resumo:
A major challenge in the post-genome era of plant biology is to determine the functions of all genes in the plant genome. A straightforward approach to this problem is to reduce or knockout expression of a gene with the hope of seeing a phenotype that is suggestive of its function. Insertional mutagenesis is a useful tool for this type of study but is limited by gene redundancy, lethal knockouts, non-tagged mutants, and the inability to target the inserted element to a specific gene. The efficacy of gene silencing in plants using inverted-repeat transgene constructs that encode a hairpin RNA (hpRNA) has been demonstrated by a number of groups, and has several advantages over insertional mutagenesis. In this paper we describe two improved pHellsgate vectors that facilitate rapid generation of hpRNA-encoding constructs, pHellsgate 4 allows the production of an hpRNA construct in a single step from a single polymerase chain reaction product, while pHellsgate 8 requires a two-step process via an intermediate vector. We show that these vectors are effective at silencing three endogenous genes in Arabidopsis, FLOWERING LOCUS C, PHYTOENE DESATURASE and ETHYLENE INSENSITIVE 2. We also show that a construct of sequences from two genes silences both genes.
Resumo:
Recent research has revealed the existence of an elegant defence mechanism in plants and lower eukaryotes. The mechanism, known in plants as post-transcriptional gene silencing, works through sequence-specific degradation of RNA. It appears to be directed by double-stranded RNA, associated with the production of short 21-25 nt RNAs, and spread through the plant by a diffusible signal. The short RNAs are implicated as the guides for both a nuclease complex that degrades the mRNA and a methyltransferase complex that methylates the DNA of silenced genes. It has also been suggested that these short RNAs might be the mobile silencing signal, a suggestion that has been challenged recently.
Resumo:
Post-transcriptional silencing of plant genes using anti-sense or co-suppression constructs usually results in only a modest proportion of silenced individuals. Recent work has demonstrated the potential for constructs encoding self-complementary 'hairpin' RNA (hpRNA) to efficiently silence genes. In this study we examine design rules for efficient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing, and the degree of silencing. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 to 853 nt gave efficient silencing in a wide range of plant species, and inclusion of an intron in these constructs had a consistently enhancing effect. Intron-containing constructs (ihpRNA) generally gave 90-100% of independent transgenic plants showing silencing. The degree of silencing with these constructs was much greater than that obtained using either co-suppression or anti-sense constructs. We have made a generic vector, pHANNIBAL, that allows a simple, single PCR product from a gene of interest to be easily converted into a highly effective ihpRNA silencing construct. We have also created a high-throughput vector, pHELLSGATE, that should facilitate the cloning of gene libraries or large numbers of defined genes, such as those in EST collections, using an in vitro recombinase system. This system may facilitate the large-scale determination and discovery of plant gene functions in the same way as RNAi is being used to examine gene function in Caenorhabditis elegans.
Resumo:
We have tested a methodology for the elimination of the selectable marker gene after Agrobacterium-mediated transformation of barley. This involves segregation of the selectable marker gene away from the gene of interest following co-transformation using a plasmid carrying two T-DNAs, which were located adjacent to each other with no intervening region. A standard binary transformation vector was modified by insertion of a small section composed of an additional left and right T-DNA border, so that the selectable marker gene and the site for insertion of the gene of interest (GOI) were each flanked by a left and right border. Using this vector three different GOIs were transformed into barley. Analysis of transgene inheritance was facilitated by a novel and rapid assay utilizing PCR amplification from macerated leaf tissue. Co-insertion was observed in two thirds of transformants, and among these approximately one quarter had transgene inserts which segregated in the next generation to yield selectable marker-free transgenic plants. Insertion of non-T-DNA plasmid sequences was observed in only one of fourteen SMF lines tested. This technique thus provides a workable system for generating transgenic barley free from selectable marker genes, thereby obviating public concerns regarding proliferation of these genes.
Resumo:
Two transgenic callus lines of rice, stably expressing a β-glucuronidase (GUS) gene, were supertransformed with a set of constructs designed to silence the resident GUS gene. An inverted-repeat (i/r) GUS construct, designed to produce mRNA with self-complementarity, was much more effective than simple sense and antisense constructs at inducing silencing. Supertransforming rice calluses with a direct-repeat (d/r) construct, although not as effective as those with the i/r construct, was also substantially more effective in silencing the resident GUS gene than the simple sense and antisense constructs. DNA hybridisation analyses revealed that every callus line supertransformed with either simple sense or antisense constructs, and subsequently showing GUS silencing, had the silence-inducing transgenes integrated into the plant genome in inverted-repeat configurations. The silenced lines containing i/r and d/r constructs did not necessarily have inverted-repeat T-DNA insertions. There was significant methylation of the GUS sequences in most of the silenced lines but not in the unsilenced lines. However, demethylation treatment of silenced lines with 5-azacytidine did not reverse the post-transcriptional gene silencing (PTGS) of GUS. Whereas the levels of RNA specific to the resident GUS gene were uniformly low in the silenced lines, RNA specific to the inducer transgenes accumulated to a substantial level, and the majority of the i/r RNA was unpolyadenylated. Altogether, these results suggest that both sense- and antisense-mediated gene suppression share a similar molecular basis, that unpolyadenylated RNA plays an important role in PTGS, and that methylation is not essential for PTGS.
Resumo:
On occasion, virus-derived transgenes in plants can be poorly expressed and yet provide excellent virus resistance, and transgene constructs designed to supplement the expression of endogenous genes can have the effect of co-suppressing themselves and the endogenous genes. These two phenomena appear to result from the same post-transcriptional silencing mechanism, which operates by targeted-RNA degradation. Recent research into RNA-mediated virus resistance and co-suppression has provided insights into the interactions between plant viruses and their hosts, and spawned several models to explain the phenomenon.
Resumo:
Barley yellow dwarf luteovirus-GPV (BYDV-GPV) is a common problem in Chinese wheat crops but is unrecorded elsewhere. A defining characteristic of GPV is its capacity to be transmitted efficiently by both Schizaphis graminum and Rhopaloshiphum padi. This dual aphid species transmission contrasts with those of BYDV-RPV and BYDV-SGV, globally distributed viruses, which are efficiently transmitted only by Rhopaloshiphum padi and Schizaphis graminum respectively. The viral RNA sequences encoding the coat protein (22K) gene, the movement protein (17K) gene, the region surrounding the conserved GDD motif of the polymerase gene and the intergenic sequences between these genes were determined for GPV and an Australian isolate of BYDV-RPV (RPVa). In all three genes, the sequences of GPV and RPVa were more similar to those of an American isolate of BYDV-RPV (RPVu) than to any other luteovirus for which there is data available. RPVa and RPVu were very similar, especially their coat proteins which had 97% identity at the amino acid level. The coat protein of GPV had 76% and 78% amino acid identity with RPVa and RPVu respectively. The data suggest that RPVu and RPVa are correctly named as strains of the same serotype and that GPV is sufficiently different from either RPV strain to be considered a distinct BYDV type. The coat protein and movement protein genes of GPV are very dissimilar to SGV. The polymerase sequences of RPVu, RPVa and GPV show close affinities with those of the sobemo-like luteoviruses and little similarity with those of the carmo-like luteoviruses. The sequences of the coat proteins, movement proteins and the polymerase segments of BYDV serotypes, other than RPV and GPV, form a cluster that is separate from their counterpart sequences from dicot-infecting luteoviruses. The RPV and GPV isolates consistently fall within a dicot-infecting cluster. This suggests that RPV and GPV evolved from within this group of viruses. Since these other viruses all infect dicots it seems likely that their common ancestor infected a dicot and that RPV and GPV evolved from a virus that switched hosts from a dicot to a monocot.