994 resultados para Shear bond strenght
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Purpose: To determine whether universal primers alone can deliver similar levels of adhesion of resin cement to zirconia ceramic when compared to their application in conjunction with airborne-particle abrasion.Materials and Methods: Sintered zirconia blocks (N = 160) (Lava, 3M ESPE), (5.25 x 5.25 x 3 mm(3)) were embedded in acrylic resin, polished, and randomly distributed into 16 groups (n = 10 per group), according to the factors "universal primer" (8 levels) and "air-particle abrasion" (2 levels): 1. ctr: control, without application of a universal primer; 2. AP: Alloy Primer; 3. MP: Monobond Plus; 4. MZP: Metal Zirconia Primer; 5. MZ: MZ Primer; 6. Sg: Signum Zirconia Bond; 7. SbU: Singlebond Universal; 8. ZP: Z Prime Plus. The universal primers were also used after air abrasion (A) of zirconia to form the following 8 groups: Ctr-A, AP-A, MP-A, MZP-A, MZ-A, Sg-A, SbU-A, and ZP-A. After ultrasonic cleaning, air abrasion was performed using Al2O3 particles (110 mu m, 2.5 bar, 20 s at 10 mm) in a chairside air-abrasion device. After ultrasonic cleaning again, universal primers were applied according to each manufacturer's recommendation. The resin cement (RelyX ARC, 3M ESPE) was built up incrementally and photo-polymerized on the zirconia surface using a silicone mold (empty set = 3.5, height = 3 mm). All specimens were stored in distilled water (60 days at 37 degrees C) and then subjected to shear bond strength testing (SBS) in a universal testing machine (1 mm/min). On a separate set of zirconia specimens, contact angle measurements were made using the sessile drop technique with a goniometer after the application of universal primers on control and air-abraded zirconia surfaces. Data (MPa) were analyzed using one-way ANOVA, Tukey's test, and Student's t-test (alpha = 0.05).Results: When universal primers were used alone, SbU presented significantly higher mean SBS (19.5 +/- 5.8) that did the other primers (0 to 9.9 +/- 6.6) (p = 0.001). When air abraded, the groups AP-A (14.1 +/- 6.1), MP-A (15.9 +/- 5.4), ZP-A (16.9 +/- 7.3), SG-A (19.1 +/- 2.1), SbU-A (12 +/- 1.5) showed significant differences (p = 0.03). Adhesive performance of all universal primers was enhanced after air abrasion, with the exception of the SbU and MZ primers. After air abrasion, contact angle measurements were lower for the each primer (without air abrasion: 28.9 to 83.9; with air abrasion: 27.1 to 63.0), except for MZP.Conclusion: Air abrasion with 110 mu m Al2O3 followed by universal primer application increased the bond strength of tested resin cement to zirconia, with the exception of SbU and MZ.
Resumo:
There is little information regarding bond strengths of polyglass to metal alloys. This study evaluated the influence of bonding system on shear bond strength of a composite resin (Artglass/Heraeus Kulzer) to cast titanium (Ti). Twenty metallic structures (4mm in diameter, 5mm thick) of titanium grade I were cast shaped and abraded with 250mm aluminum oxide and separated into two groups. For each group was applied one bonding system (Siloc or Retention Flow) before opaque and dentin polymer superposition. This procedure was managed using teflon matrices. They were manipulated and polymerized according to the manufacturer's recommendations. The samples were stored in distilled water for 24 hours at 37º and thermocycled (5º and 55ºC/500 cycles). Shear bond strength tests were performed by using an Instron Universal testing machine at a crosshead speed of 5mm/min. Results were analyzed statistically with one-way ANOVA (a=0,5) and they indicated that the Retention Flow system was statistically better than Siloc (20.74 MPa and 11.65 MPa , respectively). It was possible to conclude that the bonding agent influenced the adhesion between polymer and cast titanium.
Resumo:
Recent bonding systems have been advocated as multi-purpose bonding agents. The aim of this study was to determine if some of these bonding systems could be associated to composite resins from different manufacturers. This investigation was conducted to test lhe shear bond strength of three bonding systems: Scotchbond Multi-Purpose (3M Dental Products), Optibond Light Cure (Kerr) and Optibond Dual Cure (Kerr), when each of them was associated to lhe composite resins: Z1 00 (3M Dental Products), Prisma - APH (Dentsply) and Herculite XRV (Kerr). Seventy-two flat dentin bonding sites were prepared to 600 grit on human premolars mounted using acrilic resins. The teeth were assigned at random to 9 groups of 8 samples each. A split die with a 3mm diameter was placed over lhe surface of lhe dentin treated with one of lhe adhesive systems, and lhe selected composite resin was inserted and light cured. The split mold was removed and all samples were termocycled and stored in 37ºC water for 24 hours before testing. Shear bond strength was determined using an lnstron Universal testing machine. Some failures were examined under lhe S.E.M. Data was analysed by one-way analysis of variance, that demonstrated a significant difference (p<0,05) in the mean shear bond strength among Optibond Light Cure (15,446 MPa), Scotchbond Multi-Purpose (13,339 MPa) and Optibond Dual Cure (10,019 MPa). These values did not depend on the composite resin used. The association between bonding system/composite resin was statistycally significant (p<0,05) and the best results were obtained when the composite resins Z100 and Herculite were used with the adhesive system Optibond Light Cure, and when the composite resin APH was used with the adhesive system Scotchbond Multi-Purpose
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
The disadvantages generated by the acid etching of the dentin, such as an increase in its permeability, in the surface moisture and in the potential to denature the external dentinal collagen, the formation of a fragility zone and the citotoxicity of the adhesive monomers; which are all aggravated by the depth of the dentin, have stimulated new and different treatment philosophies of the dentin. The purpose of the present study, therefore, was to investigate the effects of three dentin treatments: laser irradiation, acid etching and hypermineralization, in the shear bond strength of the SMP Plus bonding system. Sixty bovine incisors were extracted and randomly selected immediatly alter the animal's death. They were kept frozen (-18°C) for no longer than 14 days. After buccal dentinal surface had been exposed, X-Rays were taken to control the dentin thickness. The specimens were separated into two groups: (1) Control, kept in distilled water at 4ºC; (2) Mineralized, kept in hypermineralized solution at 4°C for 14 days. Each group was divided into three sub-groups according to the type of dentin treatment used: group F - followed the manufacturer instructions (acid-etching + primer + bond), group AL (acid-etching + primer + bond + laser) and group LA (laser + (laser + acid-etching + primer + bond). A composite resin standard cylinder (Z100-3M) was bond to the dentinal surface and the shear bond strength performed on a Universal lnstron machine 4301, with 500 Kg load and at 0,5mm/min. speed. The analysis of variance (ANOVA) determined that the treatments influenced the shear bond strength values (p<0,05) with the following average shearing load at failure: AL (9,96 MPa), F (7,28MPa) e LA (4,87 MPa). The interaction between the two factors analyzed Group (control and mineralized) and treatment (F, AL, LA) also influenced the shear bond strength (p<0,05). The highest values were obtained...
Resumo:
Purpose: To assess the microshear bond strength of 3 experimental adhesives with different degrees of hydrophilicity after 1, 7 and 90 days of storage. Materials and Methods: The bonding effectiveness of three experimental two-step etch-and-rinse adhesives (bis-GMA, bis-EMA/bis-GMA, polybutadiene [C6H12]) and one commercial adhesive (Single Bond) to sound hydrated dentin was determined using the nnicroshear test with delimitation of the adhesive area after 1, 7, and 90 days of storage in water at 37 degrees C. Two-way ANOVA was performed at the 0.05 probability level. The fractures were classified as adhesive, cohesive in dentin, cohesive in resin, and mixed. Results: The experimental adhesives showed values in the range of 11.31 to 12.96 MPa, with polybutadiene (PBH) showing the lowest bond strengths, bis-GMA the highest, and bis-EMA/bis-GMA intermediary values. Single Bond yielded bond strengths of approximately 24 MPa. Water storage decreased the bond strength in all adhesives. Adhesive fractures were predominant in experimental adhesives, while mixed fractures were the most frequent type in the Single Bond group. Conclusion: The experimental dentin adhesives of this study were able to form resin tags, but they could not penetrate into the collagen fibers and form hybrid layers. The resulting low bond strength decreased with increasing length of storage.
Resumo:
This study aimed to assess in vitro thermal alterations taking place during the Er:YAG laser cavity preparation of primary tooth enamel at different energies and pulse repetition rates. Forty healthy human primary molars were bisected in a mesio-distal direction, thus providing 80 fragments. Two small orifices were made on the dentin surface to which type K thermocouples were attached. The fragments were individually fixed with wax in a cylindrical PlexiglassA (R) abutment and randomly assigned to eight groups, according to the laser parameters (n = 10): G1 -aEuro parts per thousand 250 mJ/ 3 Hz, G2 -aEuro parts per thousand 250 mJ/ 4 Hz, G3 -aEuro parts per thousand 250 mJ/ 6 Hz, G4 -aEuro parts per thousand 250 mJ/10 Hz, G5 -aEuro parts per thousand 250 mJ/ 15 Hz, G6 -aEuro parts per thousand 300 mJ/ 3 Hz, G7 -aEuro parts per thousand 300 mJ/ 4 Hz and G8 -aEuro parts per thousand 300 mJ/ 6 Hz. An area of 4 mm(2) was delimited. Cavities were done (2 mm long x 2 mm wide x 1 mm thick) using non-contact (12 mm) and focused mode. Temperature values were registered from the start of laser irradiation until the end of cavity preparation. Data were analyzed by one-way ANOVA and Tukey test (p a parts per thousand currency signaEuro parts per thousand 0.05). Groups G1, G2, G6, and G7 were statistically similar and furnished the lowest mean values of temperature rise. The set 250 mJ/10 and 15 Hz yielded the highest temperature values. The sets 250 and 300 mJ and 6 Hz provided temperatures with mean values below the acceptable critical value, suggesting that these parameters ablate the primary tooth enamel. Moreover, the temperature elevation was directly related to the increase in the employed pulse repetition rates. In addition, there was no direct correlation between temperature rise and energy density. Therefore, it is important to use a lower pulse frequency, such as 300 mJ and 6 Hz, during cavity preparation in pediatric patients.
Resumo:
The purpose of this study was to assess the influence of Er:YAG laser pulse repetition rate on the thermal alterations occurring during laser ablation of sound and demineralized primary dentin. The morphological changes at the lased areas were examined by scanning electronic microscopy (SEM). To this end, 60 fragments of 30 sound primary molars were selected and randomly assigned to two groups (n = 30); namely A sound dentin (control) and B demineralized dentin. Each group was divided into three subgroups (n = 10) according to the employed laser frequencies: I4 Hz; II6 Hz, and III10 Hz. Specimens in group B were submitted to a pH-cycling regimen for 21 consecutive days. The irradiation was performed with a 250 mJ pulse energy in the noncontact and focused mode, in the presence of a fine water mist at 1.5 mL/min, for 15 s. The measured temperature was recorded by type K thermocouples adapted to the dentin wall relative to the pulp chamber. Three samples of each group were analyzed by SEM. The data were submitted to the nonparametric Kruskal-Wallis test and to qualitative SEM analysis. The results revealed that the temperature increase did not promote any damage to the dental structure. Data analysis demonstrated that in group A, there was a statistically significant difference among all the subgroups and the temperature rise was directly proportional to the increase in frequency. In group B, there was no difference between subgroup I and II in terms of temperature. The superficial dentin observed by SEM displayed irregularities that augmented with rising frequency, both in sound and demineralized tissues. In conclusion, temperature rise and morphological alterations are directly related to frequency increment in both demineralized and sound dentin. Microsc. Res. Tech., 2011. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Scopo dello studio: valutare i cambiamenti indotti da diversi trattamenti di mordenzatura sulla morfologia superficiale e sulla microstruttura di due vetro-ceramiche a base disilicato di litio (IPS e.max® Press e IPS e.max® CAD) ed esaminarne gli effetti sia sull’adesione con un cemento resinoso che sulla resistenza alla flessione. Materiali e metodi: Settanta dischetti (12 mm di diametro, 2 mm di spessore) di ogni ceramica sono stati preparati e divisi in 5 gruppi: nessun trattamento (G1), HF 5% 20s (G2), HF 5% 60s (G3), HF 9.6% 20s (G4), HF 9.6% 60s (G5). Un campione per ogni gruppo è stato analizzato mediante profilometro ottico e osservato al SEM. Per gli altri campioni è stato determinato lo shear bond strength (SBS) con un cemento resinoso. Dopo l’SBS test, i campioni sono stati caricati fino a frattura utilizzando il piston-on-three-ball test per determinarne la resistenza biassiale alla flessione. Risultati: L’analisi morfologica e microstrutturale dei campioni ha rivelato come diversi trattamenti di mordenzatura producano delle modifiche nella rugosità superficiale che non sono direttamente collegate ad un aumento dei valori di adesione e dei cambiamenti microstrutturali che sono più rilevanti con l’aumento del tempo di mordenzatura e di concentrazione dell’acido. I valori medi di adesione (MPa) per IPS e.max® CAD sono significativamente più alti in G2 e G3 (21,28 +/- 4,9 e 19,55 +/- 5,41 rispettivamente); per IPS e.max® Press, i valori più elevati sono in G3 (16,80 +/- 3,96). La resistenza biassiale alla flessione media (MPa) è più alta in IPS e.max® CAD (695 +/- 161) che in IPS e.max® Press (588 +/- 117), ma non è non influenzata dalla mordenzatura con HF. Conclusioni: il disilicato di litio va mordenzato preferibilmente con HF al 5%. La mordenzatura produce alcuni cambiamenti superficiali e microstrutturali nel materiale, ma tali cambiamenti non ne influenzano la resistenza in flessione.
Resumo:
The aim was to compare eight types of luting agents when used to bond six indirect, laboratory restorative materials to dentin. Cylinders of the six restorative materials (Esteticor Avenir [gold alloy], Tritan [titanium], NobelRondo [feldspathic porcelain], Finesse All-Ceramic [leucite-glass ceramic], Lava [zirconia], and Sinfony [resin composite]) were ground and air-abraded. Cylinders of feldspathic porcelain and glass ceramic were additionally etched with hydrofluoric acid and were silane-treated. The cylinders were luted to ground human dentin with eight luting agents (DeTrey Zinc [zinc phosphate cement], Fuji I [conventional glass ionomer cement], Fuji Plus [resin-modified glass ionomer cement], Variolink II [conventional etch-and-rinse resin cement], Panavia F2.0 and Multilink [self-etch resin cements], and RelyX Unicem Aplicap and Maxcem [self-adhesive resin cements]). After water storage at 37°C for one week, the shear bond strength of the specimens (n=8/group) was measured, and the fracture mode was stereomicroscopically examined. Bond strength data were analyzed with two-factorial analysis of variance (ANOVA) followed by Newman-Keuls' Multiple Range Test (?=0.05). Both the restorative material and the luting agent had a significant effect on bond strength, and significant interaction was noted between the two variables. Zinc phosphate cement and glass ionomer cements produced the lowest bond strengths, whereas the highest bond strengths were found with the two self-etch and one of the self-adhesive resin cements. Generally, the fracture mode varied markedly with the restorative material. The luting agents had a bigger influence on bond strength between restorative materials and dentin than was seen with the restorative material.
Resumo:
Einleitung: Die Anzahl zahnärztlicher Zemente sowie Restaurationsmaterialien steigt stetig. Die richtige Zementwahl für einen zuverlässigen Haftverbund zwischen Restaurationsmaterial und Zahnsubstanz ist von Interesse für den Kliniker. Ziel der vorliegenden in vitro-Studie war es daher, den Dentinhaftverbund von verschiedenen Zementen in Kombination mit verschiedenen indirekten Restaurationsmaterialien zu untersuchen. Material und Methoden: Zylindrische Probekörper aus sechs Restaurationsmaterialien (Goldlegierung, Titan, Feldspat-Keramik, Leuzit-Glaskeramik, Zirkon sowie Komposit) wurden an einem Ende plangeschliffen und sandgestrahlt. Die Zylinder aus Feldspat-Keramik und Leuzit-Glaskeramik wurden zusätzlich mit Flusssäure geätzt und silanisiert. Die Zylinder wurden anschliessend mit acht Zementen auf plangeschliffenes Dentin extrahierter menschlicher Zähne zementiert (ein Zink-Phosphatzement (DeTrey Zinc), ein konventioneller Glasionomerzement (Fuji I), ein kunststoffmodifizierter Glasionomerzement (Fuji Plus), ein "etch-&-rinse" Kompositzement (Variolink II), zwei "self-etch" Kompositzemente (Panavia F2.0 und Multilink) und zwei "self-adhesive" Kompositzemente (RelyX Unicem Aplicap und Maxcem)). Nach einwöchiger Wasserlagerung bei 37°C wurden die Dentinhaftwerte der Zylinder (n=8 pro Gruppe) mittels Scherkraft-Test gemessen. Zusätzlich wurde das Frakturmuster unter dem Lichtmikroskop bestimmt. Die Haftwerte wurden mittels zweifaktorieller ANOVA und einem post hoc-Test analysiert (Signifikanzniveau α = 0.05). Resultate: Sowohl das Restaurationsmaterial wie auch der Zement hatten einen statistisch signifikanten Effekt auf den Haftverbund. Der Zink-Phosphatzement sowie beide Glasionomerzemente zeigten die niedrigsten Haftwerte. Die höchsten Haftwerte wurden mit beiden "self-etch" und einem der zwei "self-adhesive" Kompositzementen erzielt. Im Allgemeinen variierte das Frakturmuster deutlich je nach Zement und Restaurationsmaterial. Schlussfolgerungen: Der Dentinhaftverbund wurde stärker vom Zement beeinflusst als vom Restaurationsmaterial. Die Kompositzemente erzielten im Grossen und Ganzen die höchsten Haftwerte.