967 resultados para Scorpion Toxins
Resumo:
Spider venoms contain a plethora of insecticidal peptides that act on neuronal ion channels and receptors. Because of their high specificity, potency and stability, these peptides have attracted much attention as potential environmentally friendly insecticides. Although many insecticidal spider venom peptides have been isolated, the molecular target, mode of action and structure of only a small minority have been explored. Sf1a, a 46-residue peptide isolated from the venom of the tube-web spider Segesteria florentina, is insecticidal to a wide range of insects, but nontoxic to vertebrates. In order to investigate its structure and mode of action, we developed an efficient bacterial expression system for the production of Sf1a. We determined a high-resolution solution structure of Sf1a using multidimensional 3D/4D NMR spectroscopy. This revealed that Sf1a is a knottin peptide with an unusually large β-hairpin loop that accounts for a third of the peptide length. This loop is delimited by a fourth disulfide bond that is not commonly found in knottin peptides. We showed, through mutagenesis, that this large loop is functionally critical for insecticidal activity. Sf1a was further shown to be a selective inhibitor of insect voltage-gated sodium channels, consistent with its 'depressant' paralytic phenotype in insects. However, in contrast to the majority of spider-derived sodium channel toxins that function as gating modifiers via interaction with one or more of the voltage-sensor domains, Sf1a appears to act as a pore blocker.
Resumo:
This study deals with algal species occurring commonly in the Baltic Sea: haptophyte Prymnesium parvum, dinoflagellates Dinophysis acuminata, D. norvegica and D. rotundata, and cyanobacterium Nodularia spumigena. The hypotheses are connected to the toxicity of the species, to the factors determining toxicity, to the consequences of toxicity and to the transfer of toxins in the aquatic food web. Since the Baltic Sea is severely eutrophicated, the fast-growing haptophytes have potential in causing toxic blooms. In our studies, the toxicity (as haemolytic activity) of the haptophyte P. parvum was highest under phosphorus-limited conditions, but the cells were toxic also under nitrogen limitation and under nutrient-balanced growth conditions. The cellular nutrient ratios were tightly related to the toxicity. The stoichiometric flexibility for cellular phosphorus quota was higher than for nitrogen, and nitrogen limitation led to decreased biomass. Negative allelopathic effects on another algae (Rhodomonas salina) could be observed already at low P. parvum cell densities, whereas immediate lysis of R. salina cells occurred at P. parvum cell densities corresponding to natural blooms. Release of dissolved organic carbon from the R. salina cells was measured within 30 minutes, and an increase in bacterial number and biomass was measured within 23 h. Because of the allelopathic effect, formation of a P. parvum bloom may accelerate after a critical cell density is reached and the competing species are eliminated. A P. parvum bloom indirectly stimulates bacterial growth, and alters the functioning of the planktonic food web by increasing the carbon transfer through the microbial loop. Our results were the first reports on DSP toxins in Dinophysis cells in the Gulf of Finland and on PTX-2 in the Baltic Sea. Cellular toxin contents in Dinophysis spp. ranged from 0.2 to 149 pg DTX-1 cell-1 and from 1.6 to 19.9 pg PTX-2 cell-1 in the Gulf of Finland. D. norvegica was found mainly around the thermocline (max. 200 cells L-1), whereas D. acuminata was found in the whole mixed layer (max. 7 280 cells L-1). Toxins in the sediment trap corresponded to 1 % of DTX-1 and 0.01 % PTX-2 of the DSP pool in the suspended matter. This indicates that the majority of the DSP toxins does not enter the benthic community, but is either decomposed in the water column, or transferred to higher trophic levels in the planktonic food chain. We found that nodularin, produced by Nodularia spumigena, was transferred to the copepod Eurytemora affinis through three pathways: by grazing on filaments of small Nodularia, directly from the dissolved pool, and through the microbial food web by copepods grazing on ciliates, dinoflagellates and heterotrophic nanoflagellates. The estimated proportion of the microbial food web in nodularin transfer was 22-45 % and 71-76 % in our two experiments, respectively. This highlights the potential role of the microbial food web in the transfer of toxins in the planktonic food web.
Resumo:
Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis , by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.
Resumo:
The aim of the studies reported in this thesis was to examine the feeding interactions between calanoid copepods and toxic algae in the Baltic Sea. The central questions in this research concerned the feeding, survival and egg production of copepods exposed to toxic algae. Furthermore, the importance of copepods as vectors in toxin transfer was examined. The haptophyte Prymnesium parvum, which produces extracellular toxins, was the only studied species that directly harmed copepods. Beside this, it had allelopathic effects (cell lysis) on non-toxic Rhodomonas salina. Copepods that were exposed to P. parvum filtrates died or became severely impaired, although filtrates were not haemolytic (indicative of toxicity in this study). Monospecific Prymnesium cell suspensions, in turn, were haemolytic and copepods in these treatments became inactive, although no clear effect on mortality was detected. These results suggest that haemolytic activity may not be a good proxy of the harmful effects of P. parvum. In addition, P. parvum deterred feeding, and low egestion and suppressed egg production were consequently observed in monospecific suspensions of Prymnesium. Similarly, ingestion and faecal pellet production rates were suppressed in high concentration P. parvum filtrates and in mixtures of P. parvum and R. salina. These results indicate that the allelopathic effects of P. parvum on other algal species together with lowered viability as well as suppressed production of copepods may contribute to bloom formation and persistence. Furthermore, the availability of food for planktivorous animals may be affected due to reduced copepod productivity. Nodularin produced by Nodularia spumigena was transferred to Eurytemora affinis via grazing on filaments of small N. spumigena and by direct uptake from the dissolved pool. Copepods also acquired nodularin in fractions where N. spumigena filaments were absent. Thus, the importance of microbial food webs in nodularin transfer should be considered. Copepods were able to remove particulate nodularin from the system, but at the same time a large proportion of the nodularin disappeared. This indicates that copepods may possess effective mechanisms to remove toxins from their tissues. The importance of microorganisms, such as bacteria, in the degradation of cyanobacterial toxins could also be substantial. Our results were the first reports of the accumulation of diarrhetic shellfish toxins (DSTs) produced by Dinophysis spp. in copepods. The PTX2 content in copepods after feeding experiments corresponded to the ingestion of <100 Dinophysis spp. cells. However, no DSTs were recorded from field-collected copepods. Dinophysis spp. was not selected by the copepods and consumption remained low. It seems thus likely that copepods are an unimportant link in the transfer of DSTs in the northern Baltic Sea.
Resumo:
Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.
Resumo:
The Molecular Adsorbent Recirculating System (MARS) is an extracorporeal albumin dialysis device which is used in the treatment of liver failure patients. This treatment was first utilized in Finland in 2001, and since then, over 200 patients have been treated. The aim of this thesis was to evaluate the impact of the MARS treatment on patient outcome, the clinical and biochemical variables, as well as on the psychological and economic aspects of the treatment in Finland. This thesis encompasses 195 MARS-treated patients (including patients with acute liver failure (ALF), acute-on-chronic liver failure (AOCLF) and graft failure), and a historical control group of 46 ALF patients who did not undergo MARS. All patients received a similar standard medical therapy at the same intensive care unit. The baseline data (demographics, laboratory and clinical variables) and MARS treatment-related and health-related quality-of-life data were recorded before and after treatment. The direct medical costs were determined for a period of 3.5 years.Additionally, the outcome of patients (survival, native liver recovery and need for liver transplantation) and survival predicting factors were investigated. In the outcome analysis, for the MARS-treated ALF patients, their 6-month survival (75% vs. 61%, P=0.07) and their native liver recovery rate (49% vs. 17%, P<0.001) were higher, and their need for transplantations was lower (29% vs. 57%, P= 0.001) than for the historical controls. However, the etiological distribution of the ALF patients referred to our unit has changed considerably over the past decade and the percentage of patients with a more favorable prognosis has increased. The etiology of liver failure was the most important predictor of the outcome. Other survival predicting factors in ALF included hepatic encephalopathy, the coagulation factors and the liver enzyme levels prior to MARS treatment. In terms of prognosis, the MARS treatment of the cirrhotic AOCLF patient seems meaningful only when the patient is eligible for transplantation. The MARS treatment appears to halt the progression of encephalopathy and reduce the blood concentration of neuroactive amino acids, albumin-bound and water-soluble toxins. In general, the effects of the MARS treatment seem to stabilize the patients, thus allowing additional time either for the native liver to recover, or for the patients to endure the prolonged waiting for transplantation. Furthermore, for the ALF patients, the MARS treatment appeared to be less costly and more cost-efficient than the standard medical therapy alone. In conclusion, the MARS treatment appears to have a beneficial effect on the patient outcome in ALF and in those AOCLF patients who can be bridged to transplantation.
Resumo:
The carbohydrate residues of glycosphingolipids were implicated in many biologic processes such as cell-to-cell interactions; and as receptors for some viruses, bacterial and plant toxins, hormones, and so forth, and invariably for all the lectins (1). However, their receptor functions remained poorly defined for a long time as they form micelles even at very low concentrations in aqueous medium. In micelles, the oligosaccharide chains are not expected to have a well defined orientation suitable for recognition by macromolecular ligands. This problem was overcome by incorporating them in model membranes, namely, the liposomes. The demonstration of lectin-glycolipid interaction using liposomal model membranes was a crucial development that established glycolipids as biological receptors. Moreover, glycolipid-bearing liposomes provide a convenient system for investigating the role of glycolipid density, orientation, and exposure of their oligosaccharide chains at the membrane interface relevant to their receptor function (2–4).
Resumo:
Tämän tutkimuksen tarkoitus oli tutkia T-tyypin kalsiumkanavan toimintaa ja sen mahdollista roolia neuronaalisten kantasolujen migraatiossa. T-tyypin kalsiumkanavan tehtävän kehittyneissä aivoissa tiedetään olevan elektroenkefalografisten oskillaatioiden tuottaminen. Nämä taas ovat eräiden fysiologisten ja patofysiologisten tapahtumien säätelyssä avainasemassa. Tällaisia tapahtumia ovat uni, muisti, oppiminen ja epileptiset poissaolokohtaukset. Näiden lisäksi T-tyypin kalsiumkanavalla on myös periferaalisia vaikutuksia, mutta tämä tutkielma keskittyy sen neuronaalisiin toimintoihin. Tämän matalan jännitteen säätelemän kanavan toiminta neurogeneesin aikana on vähemmän tutkittua ja tunnettua kuin sen vaikutukset kehittyneissä aivoissa. T-tyypin kalsiumkanavan tiedetään edistävän kantasolujen proliferaatiota ja erilaistumista neurogeneesiksen aikana, mutta vaikutukset niiden migraatioon ovat vähemmän tunnetut. Tämä tutkimus näyttää T-tyypin kalsiumkanavan todennäköisesti osallistuvan neuronaaliseen migraatioon hiiren alkion subventrikkeli alueelta eristetyillä kanta- tai progeniittorisoluilla tehdyissä kokeissa. Selektiiviset T-tyypin kalsiumkanavan antagonistit, etosuksimidi, nikkeli ja skorpionitoksiini, kurtoxin hidastivat migraatiota erilaistuvissa progeniittorisoluissa. Tämä tutkimus koostuu kirjallisuuskatsauksesta ja kokeellisesta osasta. Tämän tutkimuksen toinen tarkoitus oli esitellä vaihtoehtoinen lähestymistapa invasiiviselle kantasoluterapialle, joka vaatii kantasolujen viljelyä ja siirtämistä ihmiseen. Tämä toinen tapa on endogeenisten kantasolujen eiinvasiivinen stimulointi, jolla ne saadaan migratoitumaan kohdekudokseen, erilaistumaan siellä ja tehtävänsä suoritettuaan lopettamaan jakaantumisen. Non-invasiivinen kantasoluterapia on vasta tiensä alussa, ja tarvitsee farmakologista osaamista kehittyäkseen. Joitain onnistuneita ei-invasiivisia hoitoja on jo tehty selkärangan vaurioiden korjaamisessa. Vastaavanlaisia menetelmiä voitaisiin käyttää myös keskushermoston vaurioiden ja neurodegeneratiivisten sairauksien hoidossa. Näiden menetelmien kehittäminen vaatii endogeenisten kantasoluja inhiboivien ja indusoivien mekanismien tuntemista. Yksi tärkeä kantasolujen erilaistumista stimuloiva tekijä on kalsiumioni. Jänniteherkät kalsiumkanavat osallistuvat kaikkiin neurogeneesiksen eri vaiheisiin. T-tyypin kalsiumkanava, joka ekspressoituu suuressa määrin keskushermoston kehityksen alkuvaiheessa ja vähenee neuronaalisen kehityksen edetessä, saattaa olla oleellisessa asemassa progeniittorisolujen ohjaamisessa.
Resumo:
Mycotoxins are secondary metabolites of filamentous fungi. They pose a health risk to humans and animals due to their harmful biological properties and common occurrence in food and feed. Liquid chromatography/mass spectrometry (LC/MS) has gained popularity in the trace analysis of food contaminants. In this study, the applicability of the technique was evaluated in multi-residue methods of mycotoxins aiming at simultaneous detection of chemically diverse compounds. Methods were developed for rapid determination of toxins produced by fungal genera of Aspergillus, Fusarium, Penicillium and Claviceps from cheese, cereal based agar matrices and grains. Analytes were extracted from these matrices with organic solvents. Minimal sample clean-up was carried out before the analysis of the mycotoxins with reversed phase LC coupled to tandem MS (MS/MS). The methods were validated and applied for investigating mycotoxins in cheese and ergot alkaloid occurrence in Finnish grains. Additionally, the toxin production of two Fusarium species predominant in northern Europe was studied. Nine mycotoxins could be determined from cheese with the method developed. The limits of quantification (LOQ) allowed the quantification at concentrations varying from 0.6 to 5.0 µg/kg. The recoveries ranged between 96 and 143 %, and the within-day repeatability (as relative standard deviation, RSDr) between 2.3 and 12.1 %. Roquefortine C and mycophenolic acid could be detected at levels of 300 up to 12000 µg/kg in the mould cheese samples analysed. A total of 29 or 31 toxins could be analysed with the method developed for agar matrices and grains, with the LOQs ranging overall from 0.1 to 1250 µg/kg. The recoveries ranged generally between 44 and 139 %, and the RSDr between 2.0 and 38 %. Type-A trichothecenes and beauvericin were determined from the cereal based agar and grain cultures of F. sporotrichioides and F. langsethiae. T-2 toxin was the main metabolite, the average levels reaching 22000 µg/kg in the grain cultures after 28 days of incubation. The method developed for ten ergot alkaloids from grains allowed their quantification at levels varying from 0.01 to 10 µg/kg. The recoveries ranged from 51 to 139 %, and the RSDr from 0.6 to 13.9 %. Ergot alkaloids were measured in barley and rye at average levels of 59 and 720 µg/kg, respectively. The two most prevalent alkaloids were ergocornine and ergocristine. The LC/MS methods developed enabled rapid detection of mycotoxins in such applications where several toxins co-occurred. Generally, the performance of the methods was good, allowing reliable analysis of the mycotoxins of interest with sufficiently low quantification limits. However, the variation in validation results highlighted the challenges related to optimising this type of multi-residue methods. New data was obtained about the occurrence of mycotoxins in mould cheeses and of ergot alkaloids in Finnish grains. In addition, the study revealed the high mycotoxin-producing potential of two common fungi in Finnish crops. The information can be useful when risks related to fungal and mycotoxin contamination will be assessed.
Resumo:
Heymann's nephritis (HN) in rats induced by injecting renal proximal tubule brush border protein gp330, is an animal model replicating human autoimmune membranous glomerulonephritis(1). Endogenous IgG gets deposited between the foot processes in the epithelial side of the glomerulus and causes complement-mediated membrane injury, leading to proteinuria and basement membrane thickening. We investigated the effect of a toxin, gelonin conjugated to gp330 and targetted against antigp330-producing cells in ameliorating immune injury and nephrotic state in rats. The groups of animals injected with purified gp330 revealed by immunofluorescence, characteristic granular deposits of IgG along the basement membrane. The rats intravenously injected with gelonin gp330 conjugate, four days after the antigenic challenge with gp330 in two doses, showed amelioration of the nephrotic state and appreciable reduction in glomerular IgG deposits against immune injury. This substantiates our earlier biochemical results and corroborates the possibility of using toxins conjugated to specific antigen in treating antibody-mediated autoimmune diseases.
Resumo:
We review the current status of various aspects of biopolymer translocation through nanopores and the challenges and opportunities it offers. Much of the interest generated by nanopores arises from their potential application to third-generation cheap and fast genome sequencing. Although the ultimate goal of single-nucleotide identification has not yet been reached, great advances have been made both from a fundamental and an applied point of view, particularly in controlling the translocation time, fabricating various kinds of synthetic pores or genetically engineering protein nanopores with tailored properties, and in devising methods (used separately or in combination) aimed at discriminating nucleotides based either on ionic or transverse electron currents, optical readout signatures, or on the capabilities of the cellular machinery. Recently, exciting new applications have emerged, for the detection of specific proteins and toxins (stochastic biosensors), and for the study of protein folding pathways and binding constants of protein-protein and protein-DNA complexes. The combined use of nanopores and advanced micromanipulation techniques involving optical/magnetic tweezers with high spatial resolution offers unique opportunities for improving the basic understanding of the physical behavior of biomolecules in confined geometries, with implications for the control of crucial biological processes such as protein import and protein denaturation. We highlight the key works in these areas along with future prospects. Finally, we review theoretical and simulation studies aimed at improving fundamental understanding of the complex microscopic mechanisms involved in the translocation process. Such understanding is a pre-requisite to fruitful application of nanopore technology in high-throughput devices for molecular biomedical diagnostics.
Resumo:
DNA gyrase is the target of two plasmid-encoded toxins CcdB and microcin B17, which ensure plasmid maintenance. These proteins stabilize gyrase-DNA covalent complexes leading to double-strand breaks in the genome. In contrast, the physiological role of chromosomally encoded inhibitor of DNA gyrase (Gyrl) in Escherichia coli is unclear and its mechanism of inhibition has not been established. We demonstrate that the mode of inhibition of GyrI is distinct from all other gyrase inhibitors. It inhibits DNA gyrase prior to, or at the step of, binding of DNA by the enzyme. Gyrl reduces intrinsic as well as toxin-stabilized gyrase-DNA covalent complexes. Furthermore, Gyri reduces microcin B17-mediated double-strand breaks in vivo, imparting protection to the cells against the toxin, substantiating the in vitro results. Thus, Gyrl is an antidote to DNA gyrase-specific proteinaceous poisons encoded by plasmid addiction systems.
Resumo:
Background: Diseases from Staphylococcus aureus are a major problem in Indian hospitals and recent studies point to infiltration of community associated methicillin resistant S. aureus (CA-MRSA) into hospitals. Although CA-MRSA are genetically different from nosocomial MRSA, the distinction between the two groups is blurring as CA-MRSA are showing multidrug resistance and are endemic in many hospitals. Our survey of samples collected from Indian hospitals between 2004 and 2006 had shown mainly hospital associated methicillin resistant Staphylococcus aureus (HA-MRSA) carrying staphylococcal cassette chromosome mec (SCCmec) type III and IIIA. But S. aureus isolates collected from 2007 onwards from community and hospital settings in India have shown SCCmec type IV and V cassettes while several variations of type IV SCCmec cassettes from IVa to IVj have been found in other parts of the world. In the present study, we have collected nasal swabs from rural and urban healthy carriers and pus, blood etc from in patients from hospitals to study the distribution of SCCmec elements and sequence types (STs) in the community and hospital environment. We performed molecular characterization of all the isolates to determine their lineage and microarray of select isolates from each sequence type to analyze their toxins, virulence and immune-evasion factors. Results: Molecular analyses of 68 S. aureus isolates from in and around Bengaluru and three other Indian cities have been carried out. The chosen isolates fall into fifteen STs with all major clonal complexes (CC) present along with some minor ones. The dominant MRSA clones are ST22 and ST772 among healthy carriers and patients. We are reporting three novel clones, two methicillin sensitive S. aureus (MSSA) isolates belonging to ST291 (related to ST398 which is live stock associated), and two MRSA clones, ST1208 (CC8), and ST672 as emerging clones in this study for the first time. Sixty nine percent of isolates carry Panton-Valentine Leucocidin genes (PVL) along with many other toxins. There is more diversity of STs among methicillin sensitive S. aureus than resistant ones. Microarray analysis of isolates belonging to different STs gives an insight into major toxins, virulence factors, adhesion and immune evasion factors present among the isolates in various parts of India. Conclusions: S. aureus isolates reported in this study belong to a highly diverse group of STs and CC and we are reporting several new STs which have not been reported earlier along with factors influencing virulence and host pathogen interactions.
Resumo:
Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.
Resumo:
Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74-123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1: 10 molar concentration of abrin: antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin's toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.