956 resultados para Scheduling optimization
Resumo:
A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190MHz and demonstrates excellent radiofrequency field homogeneity.
Resumo:
Carpooling initiated in America in the 1970s due to the oil crisis. However, over the past years, carpooling has increased significantly across the world. Some countries have created a High Occupancy Vehicle (HOV) lane to encourage commuters not to travel alone. In additional, carpool websites has been developed to facilitate the connection between the commuters, making it possible to create a compatible match in a faster and efficient manner. This project focuses on carpooling, especially in an academic environment since younger people are more likely to choose carpool. Initially, an intense research was made to examine carpool studies that occurred all over the world, following with a research of higher education institutes that use carpooling as a transportation mode. Most websites created carpools by targeting people from a specific country. These commuters have different origins and destinations making it more complicated to create compatible matches. The objective of this project is to develop a system helping teachers and students from an academic environment to create carpool matches. This objective makes it easier to create carpools because these students and teachers have the same destination. During the research, it was essential to explore, as many as possible, existing carpool websites that are available across the world. After this analysis, several sketches were made to develop the layout and structure of the web application that’s being implemented throughout the project. Once the layout was established, the development of the web application was initiated. This project had its ups and downs but it accomplished all the necessary requirements. This project can be accessed on the link: http://ipcacarpool.somee.com. Once the website was up and running, a web-based survey was developed to study the reasons that motivate people to consider carpooling as an alternative to driving alone. To develop this survey was used a tool called Survey Planet. This survey contained 408 respondents, which 391 are students and 17 are teachers. This study concludes that a majority of the respondents don’t carpool, however they will consider carpooling if there was a dedicated parking space. A majority of the respondents that carpool initiated less than a year ago, indicating that this mean of transportation is recent.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning head-dependent reservoirs under competitive environment. We propose a novel method, based on mixed-integer nonlinear programming (MINLP), for optimising power generation efficiency. This method considers hydroelectric power generation as a nonlinear function of water discharge and of the head. The main contribution of this paper is that discharge ramping constraints and start/stop of units are also considered, in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve two case studies based on Portuguese cascaded hydro systems, providing a higher profit at an acceptable computation time in comparison with classical optimisation methods based on mixed-integer linear programming (MILP).
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to eat her studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement.
Resumo:
A realização do presente trabalho teve como principais objectivos o desenvolvimento de espumas de poliuretano de um componente com propriedades de resistência à chama superiores (B1 & B2), aplicadas por pistola ou por adaptador/tubo e a optimização de uma espuma de poliuretano de um componente de inverno aplicada por pistola. Todo o trabalho desenvolvido está dividido em dois projectos distintos: i. O primeiro projecto consistiu em desenvolver espumas de um componente com propriedades de resistência à chama (classificadas como B1 e B2 de acordo com a norma alemã DIN 4102), aplicadas por pistola (GWB1 e GWB2) ou por adaptador/tubo (AWB), utilizando polióis poliésteres aromáticos modificados e aditivos retardantes de chama halogenados. Estas espumas deveriam apresentar também propriedades aceitáveis a baixas temperaturas. Após realizar várias formulações foi possível desenvolver uma espuma AWB2 com apenas 3,3% de poliol poliéster no pré-polímero e com propriedades equivalentes às da melhor espuma comercial mesmo a 5/-10 (temperatura da lata/cura da espuma em °C) e também com uma altura de chama de apenas 11 cm. A partir de duas formulações (AWB2) que passaram o Teste B2, foram obtidas também, uma espuma GWB2 e outra GWB1 com propriedades equivalentes às da melhor espuma da concorrência a -10/-10 e a 23/5, respectivamente, embora não tenham sido submetidas ao teste B2 e B1 após as modificações efectuadas. ii. O segundo projecto consistiu em optimizar uma espuma de poliuretano de um componente de inverno aplicada por pistola (GWB3). A espuma inicial tinha problemas de glass bubbles quando esta era dispensada a partir de uma lata cheia, sendo necessário ultrapassar este problema. Este problema foi resolvido diminuindo a razão de GPL/DME através do aumento da percentagem em volume de DME no pré-polímero para 14% no entanto, a estabilidade dimensional piorou um pouco. O reagente FCA 400 foi removido da formulação anterior (6925) numa tentativa de diminuir o custo da espuma, obtendo-se uma espuma aceitável a 23/23 e a 5/5, com uma redução de 4% no custo da produção e com uma redução de 5,5% no custo por litro de espuma dispensada, quando comparada com a sua antecessora. Por último, foi avaliada a influência da concentração de diferentes surfactantes na formulação 6925, verificando-se o melhoramento da estrutura celular da espuma para concentrções mais elevadas de surfactante, sendo este efeito mais notório a temperaturas mais baixas (5/5). Dos surfactantes estudados, o B 8871 mostrou o melhor desempenho a 5/5 com a concentração mais baixa, sendo portanto o melhor surfactante, enquanto o Struksilon 8003 demonstrou ser o menos adequado para esta formulação específica, apresentando piores resultados globais. Pode-se ainda acrescentar que os surfactantes L-5351, L-5352 e B 8526 também não são adequados para esta formulação uma vez que as espumas resultantes apresentam cell collapse, especialmente a 5/5. No caso dos surfactantes L-5351 e L-5352, esta propriedade piora com concentrações mais elevadas. Em cada projecto foram também efectuados testes de benchmark em determinadas espumas comerciais com o principal objectivo de comparar todos os resultados das espumas desenvolvidas, em ambos os projectos, com espumas da concorrência.
Resumo:
Topology optimization consists in finding the spatial distribution of a given total volume of material for the resulting structure to have some optimal property, for instance, maximization of structural stiffness or maximization of the fundamental eigenfrequency. In this paper a Genetic Algorithm (GA) employing a representation method based on trees is developed to generate initial feasible individuals that remain feasible upon crossover and mutation and as such do not require any repairing operator to ensure feasibility. Several application examples are studied involving the topology optimization of structures where the objective functions is the maximization of the stiffness and the maximization of the first and the second eigenfrequencies of a plate, all cases having a prescribed material volume constraint.
Resumo:
In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques. We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective functions. Our framework is inspired by the search/poll paradigm of direct-search methods of directional type and uses the concept of Pareto dominance to maintain a list of nondominated points (from which the new iterates or poll centers are chosen). The aim of our method is to generate as many points in the Pareto front as possible from the polling procedure itself, while keeping the whole framework general enough to accommodate other disseminating strategies, in particular, when using the (here also) optional search step. DMS generalizes to multiobjective optimization (MOO) all direct-search methods of directional type. We prove under the common assumptions used in direct search for single objective optimization that at least one limit point of the sequence of iterates generated by DMS lies in (a stationary form of) the Pareto front. However, extensive computational experience has shown that our methodology has an impressive capability of generating the whole Pareto front, even without using a search step. Two by-products of this paper are (i) the development of a collection of test problems for MOO and (ii) the extension of performance and data profiles to MOO, allowing a comparison of several solvers on a large set of test problems, in terms of their efficiency and robustness to determine Pareto fronts.
Resumo:
This paper proposes a wind power forecasting methodology based on two methods: direct wind power forecasting and wind speed forecasting in the first phase followed by wind power forecasting using turbines characteristics and the aforementioned wind speed forecast. The proposed forecasting methodology aims to support the operation in the scope of the intraday resources scheduling model, namely with a time horizon of 5 minutes. This intraday model supports distribution network operators in the short-term scheduling problem, in the smart grid context. A case study using a real database of 12 months recorded from a Portuguese wind power farm was used. The results show that the straightforward methodology can be applied in the intraday model with high wind speed and wind power accuracy. The wind power forecast direct method shows better performance than wind power forecast using turbine characteristics and wind speed forecast obtained in first phase.
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
Smart Grids (SGs) appeared as the new paradigm for power system management and operation, being designed to integrate large amounts of distributed energy resources. This new paradigm requires a more efficient Energy Resource Management (ERM) and, simultaneously, makes this a more complex problem, due to the intensive use of distributed energy resources (DER), such as distributed generation, active consumers with demand response contracts, and storage units. This paper presents a methodology to address the energy resource scheduling, considering an intensive use of distributed generation and demand response contracts. A case study of a 30 kV real distribution network, including a substation with 6 feeders and 937 buses, is used to demonstrate the effectiveness of the proposed methodology. This network is managed by six virtual power players (VPP) with capability to manage the DER and the distribution network.
Resumo:
In this paper, a novel mixed-integer nonlinear approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge ramping constraints. Results from a case study based on one of the main Portuguese cascaded hydro energy systems are presented, showing that the proposedmixed-integer nonlinear approach is proficient. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a methodology that aims to increase the probability of delivering power to any load point of the electrical distribution system by identifying new investments in distribution components. The methodology is based on statistical failure and repair data of the distribution power system components and it uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A mixed integer non-linear optimization technique is developed to identify adequate investments in distribution networks components that allow increasing the availability level for any customer in the distribution system at minimum cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a real distribution network.