972 resultados para Sample-sample two dimensional correlation spectroscopy (SS 2D)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free surface flow past a two-dimensional semi-infinite curved plate is considered, with emphasis given to solving for the shape of the resulting wave train that appears downstream on the surface of the fluid. This flow configuration can be interpreted as applying near the stern of a wide blunt ship. For steady flow in a fluid of finite depth, we apply the Wiener-Hopf technique to solve a linearised problem, valid for small perturbations of the uniform stream. Weakly nonlinear results found using a forced KdV equation are also presented, as are numerical solutions to the fully nonlinear problem, computed using a conformal mapping and a boundary integral technique. By considering different families of shapes for the semi-infinite plate, it is shown how the amplitude of the waves can be minimised. For plates that increase in height as a function of the direction of flow, reach a local maximum, and then point slightly downwards at the point at which the free surface detaches, it appears the downstream wavetrain can be eliminated entirely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research on entrepreneurial teams has failed to settle the controversy over whether team heterogeneity helps or hinders new venture performance. Reconciling this inconsistency, this paper suggests a new conceptual approach to disentangle differential effects of team heterogeneity by modeling two separate heterogeneity dimensions, namely knowledge scope and knowledge disparity. Analyzing unique data on functional experiences of the members of 337 start-up teams, we find support for our contention of team heterogeneity as a two-dimensional concept. Results suggest that knowledge disparity negatively relates to both start-ups’ entrepreneurial and innovative performance. In contrast, we find knowledge scope to positively affect entrepreneurial performance, while it shows an inverse U-shaped relationship to innovative start-up performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the analysis of material nonlinearity, an effective shear modulus approach based on the strain control method is proposed in this paper by using point collocation method. Hencky’s total deformation theory is used to evaluate the effective shear modulus, Young’s modulus and Poisson’s ratio, which are treated as spatial field variables. These effective properties are obtained by the strain controlled projection method in an iterative manner. To evaluate the second order derivatives of shape function at the field point, the radial basis function (RBF) in the local support domain is used. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method and comparisons have been made with analytical solutions and the finite element method (ABAQUS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Percolation flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics, groundwater dynamics and fluid dynamics in porous media. Many physical processes appear to exhibit fractional-order behavior that may vary with time, or space, or space and time. The theory of pseudodifferential operators and equations has been used to deal with this situation. In this paper we use a fractional Darcys law with variable order Riemann-Liouville fractional derivatives, this leads to a new variable-order fractional percolation equation. In this paper, a new two-dimensional variable-order fractional percolation equation is considered. A new implicit numerical method and an alternating direct method for the two-dimensional variable-order fractional model is proposed. Consistency, stability and convergence of the implicit finite difference method are established. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of the methods. This technique can be used to simulate a three-dimensional variable-order fractional percolation equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of the rubidium and caesium complexes with 2-aminobenzenesulfonic acid (orthanilic acid), [Rb4(C6H6NO3S)4(H2O)]n (1) and [Cs(C6H6NO3S)]n (2) and have been determined at 200 K. Complex 1 has a repeating unit comprising four independent and different Rb coordination centres, (RbO8), (RbO7), (RbN2O4) and (RbO10), each having irregular stereochemistry and involving a number of bidentate chelate sulfonate-O,O’-metal and bridging interactions, giving a two-dimensional polymeric layered structure. Anhydrous complex 2 is also polymeric with the irregular (CsO7) coordination polyhedron comprising six sulfonate oxygen donors from three separate bidentate chelate sulfonate ligands and one monodentate bridging sulfonate oxygen, giving a two-dimensional layered structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the solution of the two-dimensional Cahn-Hilliard-reaction (CHR) equation in the xy plane as a model of Li+ intercalation into LiFePO4 material. We validate our numerical solution against the solution of the depth-averaged equation, which has been used to model intercalation in the limit of highly orthotropic diffusivity and gradient penalty tensors. We then examine the phase-change behaviour in the full CHR system as these parameters become more isotropic, and find that as the Li+ diffusivity is increased in the x direction, phase separation persists at high currents, even in small crystals with averaged coherency strain included. The resulting voltage curves decrease monotonically, which has previously been considered a hallmark of crystals that fill homogeneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a two-dimensional space-fractional reaction diffusion equation with a fractional Laplacian operator and homogeneous Neumann boundary conditions. The finite volume method is used with the matrix transfer technique of Ilić et al. (2006) to discretise in space, yielding a system of equations that requires the action of a matrix function to solve at each timestep. Rather than form this matrix function explicitly, we use Krylov subspace techniques to approximate the action of this matrix function. Specifically, we apply the Lanczos method, after a suitable transformation of the problem to recover symmetry. To improve the convergence of this method, we utilise a preconditioner that deflates the smallest eigenvalues from the spectrum. We demonstrate the efficiency of our approach for a fractional Fisher’s equation on the unit disk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractional mathematical models represent a new approach to modelling complex spatial problems in which there is heterogeneity at many spatial and temporal scales. In this paper, a two-dimensional fractional Fitzhugh-Nagumo-monodomain model with zero Dirichlet boundary conditions is considered. The model consists of a coupled space fractional diffusion equation (SFDE) and an ordinary differential equation. For the SFDE, we first consider the numerical solution of the Riesz fractional nonlinear reaction-diffusion model and compare it to the solution of a fractional in space nonlinear reaction-diffusion model. We present two novel numerical methods for the two-dimensional fractional Fitzhugh-Nagumo-monodomain model using the shifted Grunwald-Letnikov method and the matrix transform method, respectively. Finally, some numerical examples are given to exhibit the consistency of our computational solution methodologies. The numerical results demonstrate the effectiveness of the methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the mechanical properties of different two-dimensional carbon heterojunctions (HJs) made from graphene and various stable graphene allotropes, including α-, β-, γ- and 6612-graphyne (GY), and graphdiyne (GDY). It is found that all HJs exhibit a brittle behaviour except the one with α-GY, which however shows a hardening process due to the formation of triple carbon rings. Such hardening process has greatly deferred the failure of the structure. The yielding of the HJs is usually initiated at the interface between graphene and graphene allotropes, and monoatomic carbon rings are normally formed after yielding. By varying the locations of graphene (either in the middle or at the two ends of the HJs), similar mechanical properties have been obtained, suggesting insignificant impacts from location of graphene allotropes. Whereas, changing the types and percentages of the graphene allotropes, the HJs exhibit vastly different mechanical properties. In general, with the increasing graphene percentage, the yield strain decreases and the effective Young’s modulus increases. Meanwhile, the yield stress appears irrelevant with the graphene percentage. This study provides a fundamental understanding of the tensile properties of the heterojunctions that are crucial for the design and engineering of their mechanical properties, in order to facilitate their emerging future applications in nanoscale devices, such as flexible/stretchable electronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-photon fluorescence spectroscopy has been performed on rat skeletal muscles to investigate the effect of fixation processes on the micro-environments of the endogenous fluorophors in rat skeletal muscles. The two-photon fluorescence spectra measured for different fixation periods show a differential among those samples that were fixed in water, formalin and methanol, respectively. The results imply that two-photon fluorescence spectroscopy can be a potential technique for identification of healthy and malignant biological tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractional differential equations have been increasingly used as a powerful tool to model the non-locality and spatial heterogeneity inherent in many real-world problems. However, a constant challenge faced by researchers in this area is the high computational expense of obtaining numerical solutions of these fractional models, owing to the non-local nature of fractional derivatives. In this paper, we introduce a finite volume scheme with preconditioned Lanczos method as an attractive and high-efficiency approach for solving two-dimensional space-fractional reaction–diffusion equations. The computational heart of this approach is the efficient computation of a matrix-function-vector product f(A)bf(A)b, where A A is the matrix representation of the Laplacian obtained from the finite volume method and is non-symmetric. A key aspect of our proposed approach is that the popular Lanczos method for symmetric matrices is applied to this non-symmetric problem, after a suitable transformation. Furthermore, the convergence of the Lanczos method is greatly improved by incorporating a preconditioner. Our approach is show-cased by solving the fractional Fisher equation including a validation of the solution and an analysis of the behaviour of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.