996 resultados para SPECTRAL GEOMETRY
Resumo:
The polarization properties of a twisted nematic liquid crystal display (TNLCD) are studied experimentally with the aim of using it as a wavelength selector. The output of a white LED is split into its constituent wavelengths with a resolution of 2-5 nm in proportion to a voltage applied to the TNLCD. The feasibility of employing the display as a wavelength selector in visible spectrometers is demonstrated. A simple inexpensive design of a spectrometer built around an LED and a TNLCD is suggested.
Resumo:
The diruthenium(III) complex [Ru2O(O2CAr)2(MeCN)4(PPh3)2](ClO4)2 (1), on reaction with 1,2-diaminoethane (en) in MeOH at 25-degrees-C, undergoes nucleophilic attacks at the carbon of two facial MeCN ligands to form [(Ru2O)-O-III(O2CAr)2-{NH2CH2CH2NHC(Me)NH}2(PPh3)2](ClO4)2 (2) (Ar = C6H4-p-X, X = H, Me, OMe, Cl) containing two seven-membered amino-amidine chelating ligands. The molecular structure of 2 with Ar = C6H4-p-OMe was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.942 (5) angstrom, b = 14.528 (2) angstrom, c = 21.758 (6) angstrom, alpha = 109.50 (2)-degrees, beta = 92.52 (3)-degrees, gamma = 112.61 (2)-degrees, V = 3759 (2) angstrom 3, and Z = 2. The complex has an {Ru2(mu-O)(mu-O2CAr2)2(2+)} core. The Ru-Ru and average Ru-O(oxo) distances and the Ru-O-Ru angle are 3.280 (2) angstrom, 1.887 [8] angstrom, and 120.7 (4)-degrees, respectively. The amino group of the chelating ligand is trans to the mu-oxo ligand. The nucleophilic attacks take place on the MeCN ligands cis to the mu-oxo ligand. The visible spectra of 2 in CHCl3 display an absorption band at 565 nm. The H-1 NMR spectra of 2 in CDCl3 are indicative of the formation of an amino-amidine ligand. Complex 2 exhibits metal-centered quasireversible one-electron oxidation and reduction processes in the potential ranges +0.9 to +1.0 V and -0.3 to -0.5 V (vs SCE), respectively, involving the Ru(III)2/Ru(III)Ru(IV) and Ru(III)2/Ru(II)Ru(III) redox couples in CH2Cl2 containing 0.1 M TBAP. The mechanistic aspects of the nucleophilic reaction are discussed.
Resumo:
Hydrazinium metal chlorides, (N2H5)2MCl4·2H2O (where M = Fe, Co, Ni and Cu), have been prepared from the aqueous solutions of the respective metal chlorides and hydrazine hydrochloride (N2H4·HCl or N2H4·2HCl) and investigated by spectral and thermal analyses. The crystal structure of the iron complex has been determined by direct methods and refined by full-matrix least-squares to an R of 0.023 and Rw of 0.031 for 1495 independent reflections. The structure shows ferrous ion in an octahedral environment bonded by two hydrazinium cations, two chloride anions and two water molecules. In the complex cation [Fe(N2H5)2(H2O)2Cl2]2+, the coordinated groups are in trans positions.
Resumo:
Polyamide-phosphate esters were synthesized by interfacial polycondensation of aryl phosphorodichloridates with the diols of phenoxaphosphine and phosphine oxide in the presence of a phase-transfer catalyst. The polymers were characterized by infra-red and 1H, 13C and 31P nuclear magnetic resonance (n.m.r.) spectroscopy. The molecular weights were determined by end-group analysis using 31P n.m.r. spectral data. The phenoxaphosphine-containing polymers showed superior thermostability and flame retardancy over the phosphine-oxide-containing polymers.
Resumo:
A Schiff base metal complex, [Cu(II)(PLP-DL-tyrosinato)(H2O)].4H2O (PLP = pyridoxal phosphate), with the molecular formula CuC17O13N2H27P has been prepared and characterized by magnetic, spectral, and X-ray structural studies. The compound crystallizes in the triclinic space group P1BAR with a = 8.616 (2) angstrom, b = 11.843 (3) angstrom, c = 12.177 (3) angstrom, alpha = 103.40 (2)degrees, beta = 112.32 (2)degrees, gamma = 76.50 (1)degrees, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares techniques to a final R value of 0.057 for 3132 independent reflections. The coordination geometry around Cu(II) is distorted square pyramidal with phenolic oxygen, imino nitrogen, and carboxylate oxygen from the Schiff base ligand and water oxygen as basal donor atoms. The axial site is occupied by a phosphate oxygen from a neighboring molecule, thus resulting in a one-dimensional polymer. The structure reveals pi-pi interaction of the aromatic side chain of the amino acid with the pyridoxal pi system. A comparative study is made of this complex with similar Schiff base complexes. The variable-temperature magnetic behavior of this compound shows a weak antiferromagnetic interaction.
Resumo:
This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.
Resumo:
Sparking potentials in a coaxial cylinder geometry in oxygen and dry air were measured in crossed electric and magnetic fields. From the data effective collision frequencies were calculated using the equivalent pressure concept. It is shown that the equivalent pressure concept holds good for deriving the effective collision frequencies in non-uniform electric fields.
Resumo:
ß-arylhydrazone-imine ligand complexes of nickel(II), namely, 4,10-dimethyl-5,9-diazatrideca-4,9-diene-2,12-dione-3,11-diphenylhydrazonato nickel(II), Ni(acacpn)(N2Ph-R)2 and 1,11-diphenyl-3,9-dimethyl-4,8-diazaun-deca-3,8-diene,1,11-dione-2,10-diphenyl hydrazonato nickel(II), Ni (beacpn) (N2Ph-R)2, [R = H, o-CH3p-CH3] have been prepared by metal template reactions and characterized. Both the azomethine nitrogens and α-nitrogens of bis-hydrazone form the coordination sites of the square-planar geometry around the nickel(II) ion. Loss of CO from the molecule and subsequently an interesting methyl group migration to the nucleus of the chelate ring have been observed in the mass spectrum. Structures are proposed based on the spectral and magnetic properties.
Resumo:
The surfactant-assisted seed-mediated growth method was used for the formation of gold nanorods (GNRs) directly on gold (Au) and indium tin oxide (ITO) surfaces. Citrate-stabilized similar to 2.6 nm spherical gold nanoparticles (AuNPs) were first self-assembled on ITO or Au surfaces modified with (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film and then immersed in a cationic surfactant growth solution to form GNRs. The growth of GNRs on the MPTS sol gel film modified ITO surface was monitored by UV-visible spectroscopy. The ITO surface with the attached spherical AuNPs shows a surface plasmon resonance band at 550 nm. The intensity of this absorption band increases while increasing the immersion time of the AuNP-modified ITO surface into the growth solution, and after 5 h, an additional shoulder band around 680 nm was observed. The intensity of this shoulder band increases, and it was shifted to longer wavelength as the immersion time of the AuNP-modified ITO surface into the growth solution increases. After 20 h, a predominant wave at 720 nm was observed along with a band at 550 nm. Further immersion of the modified ITO surface into the growth solution did not change the absorption characteristics. The bands observed at 550 and 720 nm were characteristics of GNRs, corresponding to transverse and longitudinal waves, respectively. The AFM images showed the presence of GNRs on the surface of the MPTS sol gel modified ITO surface with a typical length of similar to 100-120 nm and a width of similar to 20-22 nm in addition to a few spherical AuNPs, indicating that seeded spherical AuNPs were not completely involved in the GNRs' formation. Finally, the electrocatalytic activity of the surface-grown GNRs on the MPTS sol gel film modified Au electrode toward the oxidation of ascorbic acid (AA) was studied. Unlike a polycrystalline Au electrode, the surface-grown GNR-modified electrode shows two well-defined voltammetric peaks for AA at 0.01 and 0.35 V in alkaline, neutral, and acidic pHs. The cause for the observed two oxidation peaks for AA was due to the presence of both nanorods and spherical nanoparticles on the electrode surface. The presence of spherical AuNPs on the MPTS sol gel film oxidized AA at more positive potential, whereas the GNRs oxidized AA at less positive potential. The observed 340 mV less positive potential shift in the oxidation of AA suggested that GNRs are better electrocatalysts for the oxidation of AA than the spherical AuNPs.
Resumo:
Five new complexes of lanthanide perchlorates with a new ligand O,O' diisopropyl N(-4-antipyryl) phosphoramidate (DIAP) of the general formula Ln(DIAP)4(ClO4)3 where Ln = La, Pr, Nd, Sm and Gd, have been synthesised and characterized by chemical analysis, IR(200–4000cm−1) and electronic spectra and electrical conductance data. Infrared spectral data indicate the coordination of the ligand to the metal ions in a bidentate fashion, through the C=O oxygen of the antipyrine group and the P=O group. IR and conductance values show that the three perchlorate groups are ionic. Electronic spectrum of the Nd3+ complex in the visible region, indicates reasonable covalency in the metal-ligand bond. The available data point to an eight coordinate geometry around the metal ions, with each ligand behaving in a bidentate ‘00’ fashion.
Resumo:
A common point of reference is needed to describe the three-dimensional arrangements of bases and base-pairs in nucleic acid structures. The different standards used in computer programs created for this purpose give rise to con¯icting interpretations of the same structure.1 For example, parts of a structure that appear ``normal'' according to one computational scheme may be highly unusual according to another and vice versa. It is thus dif®cult to carry out comprehensive comparisons of nucleic acid structures and to pinpoint unique conformational features in individual structures
Resumo:
A detailed analysis of structural and position dependent characteristic features of helices will give a better understanding of the secondary structure formation in globular proteins. Here we describe an algorithm that quantifies the geometry of helices in proteins on the basis of their C-alpha atoms alone. The Fortran program HELANAL can extract the helices from the PDB files and then characterises the overall geometry of each helix as being linear, curved or kinked, in terms of its local structural features, viz. local helical twist and rise, virtual torsion angle, local helix origins and bending angles between successive local helix axes. Even helices with large radius of curvature are unambiguously identified as being linear or curved. The program can also be used to differentiate a kinked helix and other motifs, such as helix-loop-helix or a helix-turn-helix (with a single residue linker) with the help of local bending angles. In addition to these, the program can also be used to characterise the helix start and end as well as other types of secondary structures.
Resumo:
The experimental charge density distribution in three compounds, 2-chloro-3-quinolinyl methanol, 2-chloro-3-hydroxypyridine, and 2-chloro-3-chloromethyl-8-methylquinoline, has been obtained using high-resolution X-ray diffraction data collected at 100 K based on the aspherical multipole modeling of electron density. These compounds represent type I (cis), type I (trans), and type II geometries, respectively, as defined for short Cl center dot center dot center dot Cl interactions. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from a periodic quantum calculation at the B3LYP/6-31G** level. The topological features derived from the Bader's theory of atoms in molecules (AIM) approach unequivocally suggest that both cis and trans type I geometries show decreased repulsion, whereas type II geometry is attractive based on the nature of polar flattening of the electron density around the Cl atom.
Resumo:
Raman spectroscopic measurements in borate glasses have been reviewe. The review shows that the technique is useful in identifying the structural groups present in the borate on the basis of the Krogh-Moe hypothesis. Vitreous B2O3 and alkali borates are extensvvely studied and a satisfactory assignment of bands is possible by a careful consideration of the literature. A cation effect on the borate netwoork is observed. Availaable measurements on binary borates other than alkali borates and on ternary borates are limited and more work is required to identify the structural modifications that take place with composition. Mixed alkali effect is reported only lithium-caesium borade and shows the formation of non-bridging oxygens, destroying the six-membered rings when Li2O is replaced by Cs2O. Fast ionic glasses (alkali borates containing alkali halides) yield the same Raman spectra as the alkali borates, except when the alkali is a fluoride.