936 resultados para SOLUTION PHASE EQUILIBRIA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trigonal phase of tellurium (t-Te) nanorods with tapered ends have been synthesized through spontaneous oxidation of NaHTe by dissolved oxygen at room temperature. Utilization of sodium dodecyl benzenesulfonate was found to help to obtain high-quality nanorods. The product was characterized by X-ray diffraction and Transmission electron microscopy. In addition, the possible nucleation and growth mechanism of the t-Te nanorods was discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrospray ionization tandem mass spectrometry (ESI-MSn) and the phase solubility method were used to characterize the gas-phase and solution-phase non-covalent complexes between rutin (R) and alpha-, beta- and gamma-cyclodextrins (CDs). The direct correlation between mass spectrometric results and solution-phase behavior is thus revealed. The order of the 1:1 association constants (K-c) of the complexes between R and the three CDs in solution calculated from solubility diagrams is in good agreement with the order of their relative peak intensities and relative collision-induced dissociation (CID) energies of the complexes under the same ESI-MSn condition in both the positive and negative ion modes. Not only the binding stoichiometry but also the relative stabilities and even binding sites of the CD-R complexes can be elucidated by ESI-MSn. The diagnostic fragmentation of CD-R complexes, with a significant contribution of covalent fragmentation of rutin leaving the quercetin (Q) moiety attached to the CDs, provides convincing evidence for the formation of inclusion complexes between R and CDs. The diagnostic fragment ions can be partly confirmed by the complexes between Q and CDs. The gas-phase stability order of the deprotonated CD-R complexes is beta-CD-R > alpha-CD-R > gamma-CD/R; beta-CD seems to bind R more strongly than the other CDs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structures and the electrochemical characteristics of La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy, Ti0.25-xZrxV0.35Cr0.1Ni0.3 (x = 0.05-0.15) alloy and AB(3solution alloy and non-AB(5)-type alloy, respectively, have been investigated, and the performances of MH-Ni battery in which AB(3

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mg-20Gd(%, mass fraction) samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated alpha-Mg solid solution phase and the as-east ingot mainly contains alpha-Mg solid solution and Mg5Gd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2%. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-covalent inclusion complexes formed between an anti-inflammatory drug, oleanolic acid (OA), and alpha-, beta- and gamma-cyclodextrins (CDs) were investigated by means of solubility studies and electrospray ionization tandem mass spectrometry (ESI-MSn). The order of calculated association constants (K-1:1) of complexes between OA and different CDs in solution is in good agreement with the order of their relative peak intensities and the relative CID energies of the complexes under the same ESI-MSn conditions. These results indicate a direct correlation between the behaviors of solution- and gas-phase complexes. ESI-MS can thus be used to evaluate solution-phase non-covalent complexes successfully. The experimental results show that the most stable 1:1 inclusion complexes between three CDs and OA can be formed, but 2:1 CD-OA complexes can be formed with beta- and gamma-CDs. Multi-component complexes of alpha-CD-OA-beta-CD (1:1:1), alpha-CD-OA-gamma-CD (1:1:1) and beta-CD-OA-gamma-CD (1:1:1) were found in equimolar CD mixtures with excess OA. The formation of 2:1 and multi-component 1:1:1 non-covalent CD-OA complexes indicates that beta- and gamma-CD are able to form sandwich-type inclusion non-covalent complexes with OA. The above results can be partly supported by the relative sizes of OA and CD cavities by molecular modeling calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The change in the microphase separation transition (MST) temperature of a styrene-butadiene-styrene (SBS) triblock copolymer induced by the addition of polystyrene (PS) was investigated by small-angle X-ray scattering. It was found that the transition temperature was determined from the molecular weight (M(H)) Of the added PS in relation to that of the corresponding blocks (M(A)) in the copolymer. The MST temperature decreased with added PS if M(H)/M(A) < 1/4, while it increased with added PS when M(H)/M(A) > 1/4 Analysis of the theoretical expression based on the random phase approximation showed exactly the same tendency of change in the transition temperatures as that observed experimentally. The interaction parameter, chi(SB), obtained by nonlinear fitting of the scattering profiles of SBS/PS blends in the disordered state, was found to be a function of temperature and composition. Composition fluctuations were found to exist in SBS/PS blends, increasing with increasing addition of PS but diminishing with increasing molecular weight of the added PS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The compatibility and crystallization of tetrahydrofuran-methyl methacrylate diblock copolymer (PTHF-b-PMMA)/tetrahydrofuran homopolymer (PTHF) blends were studied. Our results showed that the crystallization and morphology of compatible PTHF-b-PMMA/PTHF

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural fluids with water-salt-gas are often found in every sphere of the Earth, whose physicochemical properties and geochemical behaviors are complicated. To study these properties and behaviors turns out to be one of the challenging issues in geosciences. Traditional approaches mainly depend on experiments and observations. However, it is impossible to obtain a large number of data covering a large T-P space of the Earth by experimental methods in the near future, which will hinder the advance of the theoretical study. Therefore, it is important to model natural fluids by advanced theoretical methods, by which limited experimental data can be extended to a large temperature-pressure-composition space. Physicochemical models developed in this dissertation are not only more accurate, but also extend the applied T-P-m region of the experimental data of the multi-fluid systems by about two times. These models provide the new and accurate theoretical tools for the geochemical research, especially for the water-rock interactions and the study of the fluid inclusions. The main achievements can be summarized as follows: (1) A solubility model on components of natural gases is presented. The solubility model on the systems of CH4-H2O-NaCl, C2H6-H2O-NaCl or N2-H2O-NaCl takes advantage of modern physicochemical theory and methods, and is an improvement over previous models whose prediction and precision are relatively poor. The model can predict not only the gas solubility in liquid phase but also water content in the gas phase. In addition, it can predict gases (methane or nitrogen) solubility in seawater and brine. Isochores can be determined, which are very important in the interpretation of fluid inclusions. (2) A density model on common aqueous salt solutions is developed. The density models with high precision for common aqueous salt solutions (H2O-NaCl, H2O-LiCl, H2O-KCl, H2O-MgCl2, H2O-CaCl2, H2O-SrCl2 or H2O-BaCl2) are absent in the past. Previous density models are limited to the relatively small range of experimental data, and cannot meet the requirement of the study of natural fluids. So a general density model of the above systems is presented by us based on the international standard density model of the water. The model exceeds the other models in both precision and prediction. (3) A viscosity model on common aqueous alkali-chloride solutions is proposed. Dynamic viscosity of water-salt systems, an important physics variable, is widely used in three-dimension simulation of the fluids. But in most cases, due to the lack of viscosity models with a wide T-P range, the viscosity of aqueous salt solutions is replaced by that of the water, giving rise to a relatively large uncertainty. A viscosity model with good prediction for the systems (H2O-NaCl, H2O-LiCl or H2O-KCl) is presented on the base of the international standard viscosity model of water and the density model developed before. (4) Equation of State applied in fluid inclusions. The best Equations of State in the world developed by others or us recently are applied in the study of the fluid inclusions. Phase equilibria and isochores of unitary system (e.g. H2O, CO2, CH4, O2, N2, C2H6 or H2S), binary H2O-NaCl system and ternary H2O-CH4-NaCl system are finished. From these programs and thermodynamic equations of coexisting ores, the physicochemical conditions before or after the deposits form can be determined. To some extent, it is a better tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geological fluids exist in every geosphere of the Earth and play important roles in many processes of material transformations, energetic interchanges and geochemical interactions. To study the physicochemical properties and geochemical behaviors of geological fluids turn Girt to be one of the challenging issues in geosciences. Compared with conventional approaches of experiments and semi-theoretical modeling, computer simulation on molecular level shows its advantages on quantitative predictions of the physicochemical properties of geological fluids under extreme conditions and emerges as a promising approach to find the characteristics of geological fluids and their interactions in different geospheres of the Earth interior.This dissertation systematically discusses the physicochemical properties of typical geological fluids with state-of-the-art computer simulation techniques. The main results can be summarized as follows: (1) The experimental phase behaviors of the systems CH4-C2H6 and. CO2 have been successfully reproduced with Monte Carlo simulations. (2) Through comprehensive isothermal-isobaric molecular dynamics simulations, the PVT data of water hia^e been extended beyond experimental range to about 2000 K and 20 GPa and an improved equation of state for water has been established. (3) Based on extensive computer simulations, am optimized molecular potential for carbon dioxide have been proposed, this model is expected to predict different properties of carbon dioxide (volumetric properties, phase equilibria, heat of vaporization, structural and dynamical properties) with improved accuracies. (4) On the basis of the above researches of the end-members, a set of parameters for unlike interactions has been proposed by non-linear fitting to the ab initio potential surface of CO2-H2O and is superior to the common used mixing rule and the results of prior workers vs/Ith remarkable accuracies, then a number of simulations of the mixture have been carried out to generate data under high temperatures and pressures as an important complement to the limited experiments. (5) With molecular dynamics simulations, various structural, dynamical and thermodynamical properties of ionic solvations and associations have been oomprehensively analyzed, these results not only agree well with experimental data and first principle calculation results, but also reveal some new insights into the microscopic ionic solvation and association processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Group IV materials such as silicon nanocrystals (Si NCs) and carbon quantum dots (CQDs) have received great attention as new functional materials with unique physical/chemical properties that are not found in the bulk material. This thesis reports the synthesis and characterisation of both types of nanocrystal and their application as fluorescence probes for the detection of metal ions. In chapter 2, a simple method is described for the size controlled synthesis of Si NCs within inverse micelles having well defined core diameters ranging from 2 to 6 nm using inert atmospheric synthetic methods. In addition, ligands with different molecular structures were utilised to reduce inter-nanocrystal attraction forces and improve the stability of the NC dispersions in water and a variety of organic solvents. Regulation of the Si NCs size is achieved by variation of the surfactants and addition rates, resulting high quality NCs with standard deviations (σ = Δd/d) of less than 10 %. Large scale production of highly mondisperse Si NC was also successfully demonstrated. In chapter 3, a simple solution phase synthesis of size monodisperse carbon quantum dots (CQDs) using a room temperature microemulsion strategy is demonstrated. The CQDs are synthesized in reverse micelles via the reduction of carbon tetrachloride using a hydride reducing agent. CQDs may be functionalised with covalently attached alkyl or amine monolayers, rendering the CQDs dispersible in wide range of polar or non-polar solvents. Regulation of the CQDs size was achieved by utilizing hydride reducing agents of different strengths. The CQDs possess a high photoluminescence quantum yield in the visible region and exhibit excellent photostability. In chapter 4, a simple and rapid assay for detection of Fe3+ ions was developed, based on quenching of the strong blue-green Si NC photoluminescence. The detection method showed a high selectivity, with only Fe3+ resulting in strong quenching of the fluorescence signal. No quenching of the fluorescence signal was induced by Fe2+ ions, allowing for solution phase discrimination between the same ion in different charge states. The optimised sensor system showed a sensitive detection range from 25- 900 μM and a limit of detection of 20.8 μM

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An overview on processes that are relevant in light-induced fuel generation, such as water photoelectrolysis or carbon dioxide reduction, is given. Considered processes encompass the photophysics of light absorption, excitation energy transfer to catalytically active sites and interfacial reactions at the catalyst/solution phase boundary. The two major routes envisaged for realization of photoelectrocatalytic systems, e.g. bio-inspired single photon catalysis and multiple photon inorganic or hybrid tandem cells, are outlined. For development of efficient tandem cell structures that are based on non-oxidic semiconductors, stabilization strategies are presented. Physical surface passivation is described using the recently introduced nanoemitter concept which is also applicable in photovoltaic (solid state or electrochemical) solar cells and first results with p-Si and p-InP thin films are presented. Solar-to-hydrogen efficiencies reach 12.1% for homoepitaxial InP thin films covered with Rh nanoislands. In the pursuit to develop biologically inspired systems, enzyme adsorption onto electrochemically nanostructured silicon surfaces is presented and tapping mode atomic force microscopy images of heterodimeric enzymes are shown. An outlook towards future envisaged systems is given. © 2010 The Royal Society of Chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A wide and versatile range of analytical techniques are routinely used, indeed are necessary, in pharmaceutical analysis. Over the past decade Raman spectroscopy has increasingly come to the fore as a valuable member of the arsenal of methods used, from both a fundamental and applied perspective, for the interrogation of solid, liquid and solution phase samples. Advances have occurred not only in instrumentation but also in fundamental techniques and applications. The method holds substantial potential for the investigation of, what are normally considered, problematic or challenging areas of analysis. The aforementioned areas include – but are, definitely not limited too reaction kinetics, pharmaceutical drug discovery, detection of counterfeit/adulterated/illegal drugs, trace analysis and uses for on-line pharmaceutical process manufacturing. This, the first of several articles on the use of Raman spectroscopic techniques in pharmaceutical analysis, provides an introductory overview of the theory of the technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel phosphoramidite; N,N-diisopropylamino-2-cyanoethyl-ortho-methylbenzylphosphoramidite 1, was prepared. The reaction of 1 with DMTrT and subsequent derivatisation of the phosphite triester product under solution-phase, Michaelis–Arbuzov conditions was investigated. Coupling of 1 with the terminal hydroxyl groups of support-bound oligodeoxyribonucleotides and subsequent reaction with an activated disulfide yielded oligonucleotides bearing a terminal, phosphorothiolate-linked, lipophilic moiety. The oligomers were readily purified using RP-HPLC. Silver(I)-mediated cleavage of the phosphorothiolate linkage and desalting of the oligonucleotides were performed readily in one step to yield cleanly the corresponding phosphate monester-terminated oligomers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isentropic compressibilities ?S, and excess isentropic compressibilities ?SE have been determined from measurements of speeds of sound u and densities ? of 14 binary mixtures of triethylamine (TEA) and tri-n-butylamine (TBA) with n-hexane, n-octane, iso-octane, n-propylamine, n-butylamine, n-hexylamine and n-octylamine. The relative magnitude and sign of ?SE have been interpreted in terms of molecular interactions and interstitial accommodation. The values of ?SE for TEA + alkane are positive while for TBA + alkane are negative. The values of ?SE for TEA + primary amine become progressively less positive and eventually to negative with the increase in chain length of alkylamine. In case of TBA + primary amine, the values of ?SE increase from n-propylamine to n-butylamine, and then decrease with chain length of primary amine. The experimental speeds of sound u have been analyzed in terms of collision factor theory, free length theory and Prigogine–Flory–Patterson statistical theory of solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The speeds of sound u, densities ? and refractive indices nD of homologous series of mono-, di-, and tri-alkylamines were measured in the temperature range from 298.15 to 328.15 K. Isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, Rao’s molar sound function R, thermal expansion coefficient a, thermal pressure coefficient ?, and reduction parameters P*, V*, and T* in frameworks of the ERAS model for associated amines and Flory model for tertiary amines have been calculated from the measured experimental data. Applicability of the Rao theory and the ERAS and Flory models have been examined and discussed for the alkyl amines.