945 resultados para Root Mean Squared Error (RMSE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Capetown Harbor, Union of South Africa, drawn in Geography Division, O.S.S. Provisional ed. It was published by the OSS in 1942. Scale [ca. 1:23,000]. Covers the Table Bay harbor area of Cape Town, South Africa. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'WGS 1984 UTM 34S' coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, selected buildings and industries, proposed and existing wharves and docks, and more. Shows plans for the proposed reclamation area of the harbor. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Plan de Constantinople : du Bosphore & du Canal de la Mer Noire dessiné d'apres les meilleurs materiaux, par F. Fried ; gravé par Rud. de Rothenburg. It was published by chez Artaria & Co. in 1821. Scale [ca. 1:50,000]. Covers Istanbul and Bosporus Region, Turkey. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'European Datum 1950 UTM Zone 35N' coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, cities, towns, and villages, drainage, built-up areas and selected buildings, fortification, city districts, ports, aqueducts, and more. Relief shown by hachures. Depths shown by soundings. Includes indexes, note, and inset: Plan du Serail. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic, paper map entitled: Survey of the Cape of Good Hope, by Lieut. A.T.E. Vidal of H.M.S. Leven, assisted by Captn. Chas. Lechmere, R.N. Lieut T. Boteler, and Mr. H.A. Gibbons, Admlty. Midn. under the direction of Captn. W.F.W. Owen, 1822. J. & C. Walker sculpt. It was published according to Act of Parliament at the Hydrographical Office of the Admiralty, 4th March 1828. Scale [ca. 1:153,512]. Covers the Cape Peninsula region, including False Bay and Cape Town, South Africa. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'WGS 1984 UTM 34S' coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows coastal features such as beacons, rocks, channels, points, coves, islands, bottom soil types, anchorage points, and more. Includes also selected land features such as roads, drainage, land cover, selected buildings, towns, and more. Relief shown by contours; depths by soundings. Includes notes, table of heights, and two views. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LIDAR (LIght Detection And Ranging) first return elevation data of the Boston, Massachusetts region from MassGIS at 1-meter resolution. This LIDAR data was captured in Spring 2002. LIDAR first return data (which shows the highest ground features, e.g. tree canopy, buildings etc.) can be used to produce a digital terrain model of the Earth's surface. This dataset consists of 74 First Return DEM tiles. The tiles are 4km by 4km areas corresponding with the MassGIS orthoimage index. This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). The area of coverage corresponds to the following MassGIS orthophoto quads covering the Boston region (MassGIS orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 233906, 233910, 237890, 237894, 237898, 237902, 237906, 237910, 241890, 241894, 241898, 241902, 245898, 245902). The geographic extent of this dataset is the same as that of the MassGIS dataset: Boston, Massachusetts Region 1:5,000 Color Ortho Imagery (1/2-meter Resolution), 2001 and was used to produce the MassGIS dataset: Boston, Massachusetts, 2-Dimensional Building Footprints with Roof Height Data (from LIDAR data), 2002 [see cross references].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset consists of 2D footprints of the buildings in the metropolitan Boston area, based on tiles in the orthoimage index (orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 237890, 237894, 237898, 237902, 241890, 241894, 241898, 241902, 245898, 245902). This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). Roof height and footprint elevation attributes (derived from 1-meter resolution LIDAR (LIght Detection And Ranging) data) are included as part of each building feature. This data can be combined with other datasets to create 3D representations of buildings and the surrounding environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This package includes various Mata functions. kern(): various kernel functions; kint(): kernel integral functions; kdel0(): canonical bandwidth of kernel; quantile(): quantile function; median(): median; iqrange(): inter-quartile range; ecdf(): cumulative distribution function; relrank(): grade transformation; ranks(): ranks/cumulative frequencies; freq(): compute frequency counts; histogram(): produce histogram data; mgof(): multinomial goodness-of-fit tests; collapse(): summary statistics by subgroups; _collapse(): summary statistics by subgroups; gini(): Gini coefficient; sample(): draw random sample; srswr(): SRS with replacement; srswor(): SRS without replacement; upswr(): UPS with replacement; upswor(): UPS without replacement; bs(): bootstrap estimation; bs2(): bootstrap estimation; bs_report(): report bootstrap results; jk(): jackknife estimation; jk_report(): report jackknife results; subset(): obtain subsets, one at a time; composition(): obtain compositions, one by one; ncompositions(): determine number of compositions; partition(): obtain partitions, one at a time; npartitionss(): determine number of partitions; rsubset(): draw random subset; rcomposition(): draw random composition; colvar(): variance, by column; meancolvar(): mean and variance, by column; variance0(): population variance; meanvariance0(): mean and population variance; mse(): mean squared error; colmse(): mean squared error, by column; sse(): sum of squared errors; colsse(): sum of squared errors, by column; benford(): Benford distribution; cauchy(): cumulative Cauchy-Lorentz dist.; cauchyden(): Cauchy-Lorentz density; cauchytail(): reverse cumulative Cauchy-Lorentz; invcauchy(): inverse cumulative Cauchy-Lorentz; rbinomial(): generate binomial random numbers; cebinomial(): cond. expect. of binomial r.v.; root(): Brent's univariate zero finder; nrroot(): Newton-Raphson zero finder; finvert(): univariate function inverter; integrate_sr(): univariate function integration (Simpson's rule); integrate_38(): univariate function integration (Simpson's 3/8 rule); ipolate(): linear interpolation; polint(): polynomial inter-/extrapolation; plot(): Draw twoway plot; _plot(): Draw twoway plot; panels(): identify nested panel structure; _panels(): identify panel sizes; npanels(): identify number of panels; nunique(): count number of distinct values; nuniqrows(): count number of unique rows; isconstant(): whether matrix is constant; nobs(): number of observations; colrunsum(): running sum of each column; linbin(): linear binning; fastlinbin(): fast linear binning; exactbin(): exact binning; makegrid(): equally spaced grid points; cut(): categorize data vector; posof(): find element in vector; which(): positions of nonzero elements; locate(): search an ordered vector; hunt(): consecutive search; cond(): matrix conditional operator; expand(): duplicate single rows/columns; _expand(): duplicate rows/columns in place; repeat(): duplicate contents as a whole; _repeat(): duplicate contents in place; unorder2(): stable version of unorder(); jumble2(): stable version of jumble(); _jumble2(): stable version of _jumble(); pieces(): break string into pieces; npieces(): count number of pieces; _npieces(): count number of pieces; invtokens(): reverse of tokens(); realofstr(): convert string into real; strexpand(): expand string argument; matlist(): display a (real) matrix; insheet(): read spreadsheet file; infile(): read free-format file; outsheet(): write spreadsheet file; callf(): pass optional args to function; callf_setup(): setup for mm_callf().

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references (leaves 19-21).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A vision system is applied to full-field displacements and deformation measurements in solid mechanics. A speckle like pattern is preliminary formed on the surface under investigation. To determine displacements field of one speckle image with respect to a reference speckle image, sub-images, referred to Zones Of Interest (ZOI) are considered. The field is obtained by matching a ZOI in the reference image with the respective ZOI in the moved image. Two image processing techniques are used for implementing the matching procedure: – cross correlation function and minimum mean square error (MMSE) of the ZOI intensity distribution. The two algorithms are compared and the influence of the ZOI size on the accuracy of measurements is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstructions of eolian dust accumulation in northwest African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in North African dust emissions over the last 20 ka, but the limited spatial extent of these records and the lack of high-resolution flux data do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 31°N to 19°N along the northwest African margin. By combining grain size endmember modeling with 230Th-normalized fluxes for the first time, we are able to document spatial and temporal changes in dust deposition under the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the African Humid Period (AHP; ~11.7-5 ka), offering robust targets for model-based estimates of the climatic and biogeochemical impacts of past changes in North African dust emissions. Our data suggest that dust fluxes between 8 and 6 ka were a factor of ~5 lower than average fluxes during the last 2 ka. Using a simple model to estimate the effects of bioturbation on dust input signals, we find that our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. The mean ages of these transitions are 11.8±0.2 ka (1Sigma) and 4.9±0.2 ka, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Ciências Actuariais

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten common doubts of chemistry students and professionals about their statistical applications are discussed. The use of the N-1 denominator instead of N is described for the standard deviation. The statistical meaning of the denominators of the root mean square error of calibration (RMSEC) and root mean square error of validation (RMSEV) are given for researchers using multivariate calibration methods. The reason why scientists and engineers use the average instead of the median is explained. Several problematic aspects about regression and correlation are treated. The popular use of triplicate experiments in teaching and research laboratories is seen to have its origin in statistical confidence intervals. Nonparametric statistics and bootstrapping methods round out the discussion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho avalia o desempenho de previsões sazonais do modelo climático regional RegCM3, aninhado ao modelo global CPTEC/COLA. As previsões com o RegCM3 utilizaram 60 km de resolução horizontal num domínio que inclui grande parte da América do Sul. As previsões do RegCM3 e CPTEC/COLA foram avaliadas utilizando as análises de chuva e temperatura do ar do Climate Prediction Center (CPC) e National Centers for Enviromental Prediction (NCEP), respectivamente. Entre maio de 2005 e julho de 2007, 27 previsões sazonais de chuva e temperatura do ar (exceto a temperatura do CPTEC/COLA, que possui 26 previsões) foram avaliadas em três regiões do Brasil: Nordeste (NDE), Sudeste (SDE) e Sul (SUL). As previsões do RegCM3 também foram comparadas com as climatologias das análises. De acordo com os índices estatísticos (bias, coeficiente de correlação, raiz quadrada do erro médio quadrático e coeficiente de eficiência), nas três regiões (NDE, SDE e SUL) a chuva sazonal prevista pelo RegCM3 é mais próxima da observada do que a prevista pelo CPTEC/COLA. Além disto, o RegCM3 também é melhor previsor da chuva sazonal do que da média das observações nas três regiões. Para temperatura, as previsões do RegCM3 são superiores às do CPTEC/COLA nas áreas NDE e SUL, enquanto o CPTEC/COLA é superior no SDE. Finalmente, as previsões de chuva e temperatura do RegCM3 são mais próximas das observações do que a climatologia observada. Estes resultados indicam o potencial de utilização do RegCM3 para previsão sazonal, que futuramente deverá ser explorado através de previsão por conjunto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3615545]