943 resultados para Resource-based View of the Firm
Resumo:
Data on the occurrence of Yersinia species, other than Y. pestis in Brazil are presented. Over the past 40 years, 767 Yersinia strains have been identified and typed by the National Reference Center on Yersinia spp. other than Y. pestis, using the classical biochemical tests for species characterization. The strains were further classified into biotypes, serotypes and phagetypes when pertinent. These tests led to the identification of Yersinia cultures belonging to the species Y. enterocolitica, Y. pseudotuberculosis, Y. intermedia, Y. frederiksenii and Y. kristensenii. Six isolates could not be classified in any of the known Yersinia species and for this reason were defined as Non-typable (NT). The bio-sero-phagetypes of these strains were diverse. The following species of Yersinia were not identified among the Brazilian strains by the classical phenotypic or biochemical tests: Y. aldovae, Y. rhodei, Y. mollaretti, Y. bercovieri and Y. ruckeri. The Yersinia strains were isolated from clinical material taken from sick and/or healthy humans and animals, from various types of food and from the environment, by investigators of various Institutions localized in different cities and regions of Brazil.
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Although many Brazilian sugar mills initiate the fermentation process by inoculating selected commercial Saccharomyces cerevisiae strains, the unsterile conditions of the industrial sugar cane ethanol fermentation process permit the constant entry of native yeast strains. Certain of those native strains are better adapted and tend to predominate over the initial strain, which may cause problems during fermentation. In the industrial fermentation process, yeast cells are often exposed to stressful environmental conditions, including prolonged cell recycling, ethanol toxicity and osmotic, oxidative or temperature stress. Little is known about these S. cerevisiae strains, although recent studies have demonstrated that heterogeneous genome architecture is exhibited by some selected well-adapted Brazilian indigenous yeast strains that display high performance in bioethanol fermentation. In this study, 11 microsatellite markers were used to assess the genetic diversity and population structure of the native autochthonous S. cerevisiae strains in various Brazilian sugar mills. The resulting multilocus data were used to build a similarity-based phenetic tree and to perform a Bayesian population structure analysis. The tree revealed the presence of great genetic diversity among the strains, which were arranged according to the place of origin and the collection year. The population structure analysis revealed genotypic differences among populations; in certain populations, these genotypic differences are combined to yield notably genotypically diverse individuals. The high yeast diversity observed among native S. cerevisiae strains provides new insights on the use of autochthonous high-fitness strains with industrial characteristics as starter cultures at bioethanol plants. © 2013 John Wiley & Sons, Ltd.
Resumo:
We investigate the possibilities of New Physics affecting the Standard Model (SM) Higgs sector. An effective Lagrangian with dimension-six operators is used to capture the effect of New Physics. We carry out a global Bayesian inference analysis, considering the recent LHC data set including all available correlations, as well as results from Tevatron. Trilinear gauge boson couplings and electroweak precision observables are also taken into account. The case of weak bosons tensorial couplings is closely examined and NLO QCD corrections are taken into account in the deviations we predict. We consider two scenarios, one where the coefficients of all the dimension-six operators are essentially unconstrained, and one where a certain subset is loop suppressed. In both scenarios, we find that large deviations from some of the SM Higgs couplings can still be present, assuming New Physics arising at 3 TeV. In particular, we find that a significantly reduced coupling of the Higgs to the top quark is possible and slightly favored by searches on Higgs production in association with top quark pairs. The total width of the Higgs boson is only weakly constrained and can vary between 0.7 and 2.7 times the Standard Model value within 95% Bayesian credible interval (BCI). We also observe sizeable effects induced by New Physics contributions to tensorial couplings. In particular, the Higgs boson decay width into Zγ can be enhanced by up to a factor 12 within 95% BCI. © 2013 SISSA.
Resumo:
Incluye Bibliografía
Resumo:
Pós-graduação em Letras - IBILCE
Resumo:
Background: Snake bite is a neglected public health problem in communities in rural areas of several countries. Bothrops jararaca causes many snake bites in Brazil and previous studies have demonstrated that the pharmacological activities displayed by its venom undergo a significant ontogenetic shift. Similarly, the venom proteome of B. jararaca exhibits a considerable variation upon neonate to adult transition, which is associated with changes in diet from ectothermic prey in early life to endothermic prey in adulthood. Moreover, it has been shown that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. On the other hand, venom gland transcripts of newborn snakes are poorly known since all transcriptomic studies have been carried out using mRNA from adult specimens. Methods/Principal Findings: Here we analyzed venom gland cDNA libraries of newborn and adult B. jararaca in order to evaluate whether the variability demonstrated for its venom proteome and pharmacological activities was correlated with differences in the structure of toxin transcripts. The analysis revealed that the variability in B. jararaca venom gland transcriptomes is quantitative, as illustrated by the very high content of metalloproteinases in the newborn venom glands. Moreover, the variability is also characterized by the structural diversity of SVMP precursors found in newborn and adult transcriptomes. In the adult transcriptome, however, the content of metalloproteinase precursors considerably diminishes and the number of transcripts of serine proteinases, C-type lectins and bradykinin-potentiating peptides increase. Moreover, the comparison of the content of ESTs encoding toxins in adult male and female venom glands showed some genderrelated differences. Conclusions/Significance: We demonstrate a substantial shift in toxin transcripts upon snake development and a marked decrease in the metalloproteinase P-III/P-I class ratio which are correlated with changes in the venom proteome complexity and pharmacological activities.
Resumo:
Abstract Background Five species of the genus Schistosoma, a parasitic trematode flatworm, are causative agents of Schistosomiasis, a disease that is endemic in a large number of developing countries, affecting millions of patients around the world. By using SAGE (Serial Analysis of Gene Expression) we describe here the first large-scale quantitative analysis of the Schistosoma mansoni transcriptome, one of the most epidemiologically relevant species of this genus. Results After extracting mRNA from pooled male and female adult-worms, a SAGE library was constructed and sequenced, generating 68,238 tags that covered more than 6,000 genes expressed in this developmental stage. An analysis of the ordered tag-list shows the genes of F10 eggshell protein, pol-polyprotein, HSP86, 14-3-3 and a transcript yet to be identified to be the five top most abundant genes in pooled adult worms. Whereas only 8% of the 100 most abundant tags found in adult worms of S. mansoni could not be assigned to transcripts of this parasite, 46.9% of the total ditags could not be mapped, demonstrating that the 3 sequence of most of the rarest transcripts are still to be identified. Mapping of our SAGE tags to S. mansoni genes suggested the occurrence of alternative-polyadenylation in at least 13 gene transcripts. Most of these events seem to shorten the 3 UTR of the mRNAs, which may have consequences over their stability and regulation. Conclusion SAGE revealed the frequency of expression of the majority of the S. mansoni genes. Transcriptome data suggests that alternative polyadenylation is likely to be used in the control of mRNA stability in this organism. When transcriptome was compared with the proteomic data available, we observed a correlation of about 50%, suggesting that both transcriptional and post-transcriptional regulation are important for determining protein abundance in S. mansoni. The generation of SAGE tags from other life-cycle stages should contribute to reveal the dynamics of gene expression in this important parasite.
Resumo:
This PhD Thesis is devoted to the accurate analysis of the physical properties of Active Galactic Nuclei (AGN) and the AGN/host-galaxy interplay. Due to the broad-band AGN emission (from radio to hard X-rays), a multi-wavelength approach is mandatory. Our research is carried out over the COSMOS field, within the context of the XMM-Newton wide-field survey. To date, the COSMOS field is a unique area for comprehensive multi-wavelength studies, allowing us to define a large and homogeneous sample of QSOs with a well-sampled spectral coverage and to keep selection effects under control. Moreover, the broad-band information contained in the COSMOS database is well-suited for a detailed analysis of AGN SEDs, bolometric luminosities and bolometric corrections. In order to investigate the nature of both obscured (Type-2) and unobscured (Type-1) AGN, the observational approach is complemented with a theoretical modelling of the AGN/galaxy co-evolution. The X-ray to optical properties of an X-ray selected Type-1 AGN sample are discussed in the first part. The relationship between X-ray and optical/UV luminosities, parametrized by the spectral index αox, provides a first indication about the nature of the central engine powering the AGN. Since a Type-1 AGN outshines the surrounding environment, it is extremely difficult to constrain the properties of its host-galaxy. Conversely, in Type-2 AGN the host-galaxy light is the dominant component of the optical/near-IR SEDs, severely affecting the recovery of the intrinsic AGN emission. Hence a multi-component SED-fitting code is developed to disentangle the emission of the stellar populationof the galaxy from that associated with mass accretion. Bolometric corrections, luminosities, stellar masses and star-formation rates, correlated with the morphology of Type-2 AGN hosts, are presented in the second part, while the final part concerns a physically-motivated model for the evolution of spheroidal galaxies with a central SMBH. The model is able to reproduce two important stages of galaxy evolution, namely the obscured cold-phase and the subsequent quiescent hot-phase.