A quantitative view of the transcriptome of Schistosoma mansoni adult-worms using SAGE


Autoria(s): Ojopi, Elida PB; Oliveira, Paulo SL; Nunes, Diana N; Paquola, Apuã ; DeMarco, Ricardo ; Gregório, Sheila P; Aires, Karina A; Menck, Carlos FM; Leite, Luciana CC; Verjovski-Almeida, Sergio ; Dias-Neto, Emmanuel 
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

26/08/2013

26/08/2013

01/06/2007

Resumo

Abstract Background Five species of the genus Schistosoma, a parasitic trematode flatworm, are causative agents of Schistosomiasis, a disease that is endemic in a large number of developing countries, affecting millions of patients around the world. By using SAGE (Serial Analysis of Gene Expression) we describe here the first large-scale quantitative analysis of the Schistosoma mansoni transcriptome, one of the most epidemiologically relevant species of this genus. Results After extracting mRNA from pooled male and female adult-worms, a SAGE library was constructed and sequenced, generating 68,238 tags that covered more than 6,000 genes expressed in this developmental stage. An analysis of the ordered tag-list shows the genes of F10 eggshell protein, pol-polyprotein, HSP86, 14-3-3 and a transcript yet to be identified to be the five top most abundant genes in pooled adult worms. Whereas only 8% of the 100 most abundant tags found in adult worms of S. mansoni could not be assigned to transcripts of this parasite, 46.9% of the total ditags could not be mapped, demonstrating that the 3 sequence of most of the rarest transcripts are still to be identified. Mapping of our SAGE tags to S. mansoni genes suggested the occurrence of alternative-polyadenylation in at least 13 gene transcripts. Most of these events seem to shorten the 3 UTR of the mRNAs, which may have consequences over their stability and regulation. Conclusion SAGE revealed the frequency of expression of the majority of the S. mansoni genes. Transcriptome data suggests that alternative polyadenylation is likely to be used in the control of mRNA stability in this organism. When transcriptome was compared with the proteomic data available, we observed a correlation of about 50%, suggesting that both transcriptional and post-transcriptional regulation are important for determining protein abundance in S. mansoni. The generation of SAGE tags from other life-cycle stages should contribute to reveal the dynamics of gene expression in this important parasite.

The authors thank Dr. Toshie Kawano and Dr. Cibele Gargioni for providing the parasite material used here. This work received financial support from Conselho Nacional de Pesquisas (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). The Laboratory of Neurosciences (LIM27) recognizes the important support received from Associação Beneficente Alzira Denise Hertzog da Silva (ABADHS).

The authors thank Dr. Toshie Kawano and Dr. Cibele Gargioni for providing the parasite material used here. This work received financial support from Conselho Nacional de Pesquisas (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). The Laboratory of Neurosciences (LIM27) recognizes the important support received from Associação Beneficente Alzira Denise Hertzog da Silva (ABADHS).

Identificador

BMC Genomics. 2007 Jun 21;8(1):186

1471-2164

http://www.producao.usp.br/handle/BDPI/32789

http://dx.doi.org/10.1186/1471-2164-8-186

10.1186/1471-2164-8-186

http://www.biomedcentral.com/1471-2164/8/186

Idioma(s)

eng

Relação

BMC Genomics

Direitos

openAccess

Ojopi et al; licensee BioMed Central Ltd. - This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tipo

article

original article