925 resultados para Repression


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450 1A1 (CYP1A1), like many monooxygenases, can produce reactive oxygen species during its catalytic cycle. Apart from the well-characterized xenobiotic-elicited induction, the regulatory mechanisms involved in the control of the steady-state activity of CYP1A1 have not been elucidated. We show here that reactive oxygen species generated from the activity of CYP1A1 limit the levels of induced CYP1A1 mRNAs. The mechanism involves the repression of the CYP1A1 gene promoter activity in a negative-feedback autoregulatory loop. Indeed, increasing the CYP1A1 activity by transfecting CYP1A1 expression vectors into hepatoma cells elicited an oxidative stress and led to the repression of a reporter gene driven by the CYP1A1 gene promoter. This negative autoregulation is abolished by ellipticine (an inhibitor of CYP1A1) and by catalase (which catalyzes H(2)O(2) catabolism), thus implying that H(2)O(2) is an intermediate. Down-regulation is also abolished by the mutation of the proximal nuclear factor I (NFI) site in the promoter. The transactivating domain of NFI/CTF was found to act in synergy with the arylhydrocarbon receptor pathway during the induction of CYP1A1 by 2,3,7,8-tetrachloro-p-dibenzodioxin. Using an NFI/CTF-Gal4 fusion, we show that NFI/CTF transactivating function is decreased by a high activity of CYP1A1. This regulation is also abolished by catalase or ellipticine. Consistently, the transactivating function of NFI/CTF is repressed in cells treated with H(2)O(2), a novel finding indicating that the transactivating domain of a transcription factor can be targeted by oxidative stress. In conclusion, an autoregulatory loop leads to the fine tuning of the CYP1A1 gene expression through the down-regulation of NFI activity by CYP1A1-based H(2)O(2) production. This mechanism allows a limitation of the potentially toxic CYP1A1 activity within the cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mammalian Ku70 and Ku86 proteins form a heterodimer that binds to the ends of double-stranded DNA in vitro and is required for repair of radiation-induced strand breaks and V(D)J recombination [1,2]. Deletion of the Saccharomyces cerevisiae genes HDF1 and HDF2--encoding yKu70p and yKu80p, respectively--enhances radiation sensitivity in a rad52 background [3,4]. In addition to repair defects, the length of the TG-rich repeat on yeast telomere ends shortens dramatically [5,6]. We have shown previously that in yeast interphase nuclei, telomeres are clustered in a limited number of foci near the nuclear periphery [7], but the elements that mediate this localization remained unknown. We report here that deletion of the genes encoding yKu70p or its partner yKu80p altered the positioning of telomeric DNA in the yeast nucleus. These are the first mutants shown to affect the subnuclear localization of telomeres. Strains deficient for either yKu70p or yKu80p lost telomeric silencing, although they maintained repression at the silent mating-type loci. In addition, the telomere-associated silencing factors Sir3p and Sir4p and the TG-repeat-binding protein Rap1p lost their punctate pattern of staining and became dispersed throughout the nucleoplasm. Our results implicate the yeast Ku proteins directly in aspects of telomere organization, which in turn affects the repression of telomere-proximal genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Throughout the past decade, social media have come on the scene of various popular revolts. Their role as tools of information and coordination of social movements, from the Iranian Green Movement in 2009 to the Arab uprisings in 2011, has been widely debated. In most cases, online activism through blogs, Facebook, Twitter or other forms of social media has allowed citizens to be part of a social networking exercise and to engage in a public sphere that would have otherwise been unreachable to them due to severe repression. In Tunisia and Egypt, social media helped protests start and expand thanks to their ability to coordinate and disseminate information quickly. The new information and communication tools were an influential factor in accelerating the revolutionary processes across the Arab world, albeit they cannot be seen as neither the spur nor the drivers of any revolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose:We analyzed the transcriptional activity of disease-causing NR2E3 mutant proteins in a heterologous system. NR2E3 belongs to the nuclear receptor superfamily of transcription factors, characterized by evolutionary-conserved DNA-binding (DBD) and ligand-binding (LBD) domains. NR2E3 acts in concert with the transcription factors CRX and NRL to repress cone-specific genes and activate rod-specific genes in rod photoreceptors. During development, NR2E3 is also required to suppress cone cell generation from retinal progenitor cells. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS), the Goldman-Favre syndrome, and, more recently, with autosomal dominant retinitis pigmentosa (adRP). Methods:The different NR2E3 mutants were generated by QuickChangeR mutagenesis and analyzed by transfection in heterologous HEK293T cells. Results:In transactivation assays in HEK293T cells, the adRP-linked p.G56R mutant protein exhibited a more severe effect both in activation of a rhodopsin promoter reporter construct and in repression of M-opsin promoter reporter construct, than the ESCS-linked R76Q, R76W, G88V, R97H, R104Q, R104W mutants of the DBD. In contrast, the ESCS-linked p.R311Q mutant of the LBD behaved like the NR2E3 wild-type protein in these assays. By co-expressing the corepressors atrophin-1 and -2, a differential repression of the M-opsin promoter was observed in presence of the p.R311Q, p.R385P and p.M407K. Interestingly, corepressor expression also affected the activity of CRX, but not NRL, in both rhodopsin and M-opsin transactivation assays. Conclusions:Taken together, these in vitro results suggest a distinct disease mechanism for the adRP-linked mutation, but open the possibility of different mechanisms for the development of ESCS that is clinically characterized by important phenotypic variations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5' regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in beta-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5' regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting beta cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-beta and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the human IB1 gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect eggs represent a threat for the plant as hatching larvae rapidly start with their feeding activity. Using a whole-genome microarray, we studied the expression profile of Arabidopsis (Arabidopsis thaliana) leaves after oviposition by two pierid butterflies. For Pieris brassicae, the deposition of egg batches changed the expression of hundreds of genes over a period of 3 d after oviposition. The transcript signature was similar to that observed during a hypersensitive response or in lesion-mimic mutants, including the induction of defense and stress-related genes and the repression of genes involved in growth and photosynthesis. Deposition of single eggs by Pieris rapae caused a similar although much weaker transcriptional response. Analysis of the jasmonic acid and salicylic acid mutants coi1-1 and sid2-1 indicated that the response to egg deposition is mostly independent of these signaling pathways. Histochemical analyses showed that egg deposition is causing a localized cell death, accompanied by the accumulation of callose, and the production of reactive oxygen species. In addition, activation of the pathogenesis-related1::beta-glucuronidase reporter gene correlated precisely with the site of egg deposition and was also triggered by crude egg extract. This study provides molecular evidence for the detection of egg deposition by Arabidopsis plants and suggests that oviposition causes a localized response with strong similarity to a hypersensitive response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inner ear hair cells and supporting cells arise from common precursors and, in mammals, do not show phenotypic conversion. Here, we studied the role of the homeodomain transcription factor Prox1 in the inner ear sensory epithelia. Adenoviral-mediated Prox1 transduction into hair cells in explant cultures led to strong repression of Atoh1 and Gfi1, two transcription factors critical for hair cell differentiation and survival. Luciferase assays showed that Prox1 can repress transcriptional activity of Gfi1 independently of Atoh1. Prox1 transduction into cochlear outer hair cells resulted in degeneration of these cells, consistent with the known phenotype of Gfi1-deficient mice. These results together with the widespread expression of endogenous Prox1 within the population of inner ear supporting cells point to the role for Prox1 in antagonizing the hair cell phenotype in these non-sensory cells. Further, in vivo analyses of hair cells from Gfi1-deficient mice suggest that the cyclin-dependent kinase inhibitor p57(Kip2) mediates the differentiation- and survival-promoting functions of Gfi1. These data reveal novel gene interactions and show that these interactions regulate cellular differentiation within the inner ear sensory epithelia. The data point to the tight regulation of phenotypic characteristics of hair cells and supporting cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli-based bioreporters for arsenic detection are typically based on the natural feedback loop that controls ars operon transcription. Feedback loops are known to show a wide range linear response to the detriment of the overall amplification of the incoming signal. While being a favourable feature in controlling arsenic detoxification for the cell, a feedback loop is not necessarily the most optimal for obtaining highest sensitivity and response in a designed cellular reporter for arsenic detection. Here we systematically explore the effects of uncoupling the topology of arsenic sensing circuitry on the developed reporter signal as a function of arsenite concentration input. A model was developed to describe relative ArsR and GFP levels in feedback and uncoupled circuitry, which was used to explore new ArsR-based synthetic circuits. The expression of arsR was then placed under the control of a series of constitutive promoters, which differed in promoter strength, and which could be further modulated by TetR repression. Expression of the reporter gene was maintained under the ArsR-controlled Pars promoter. ArsR expression in the systems was measured by using ArsR-mCherry fusion proteins. We find that stronger constitutive ArsR production decreases arsenite-dependent EGFP output from Pars and vice versa. This leads to a tunable series of arsenite-dependent EGFP outputs in a variety of systematically characterized circuitries. The higher expression levels and sensitivities of the response curves in the uncoupled circuits may be useful for improving field-test assays using arsenic bioreporters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher plants possess multiple members of the phytochrome family of red, far-red light sensors to modulate plant growth and development according to competition from neighbors. The phytochrome family is composed of the light-labile phyA and several light-stable members (phyB-phyE in Arabidopsis). phyA accumulates to high levels in etiolated seedlings and is essential for young seedling establishment under a dense canopy. In photosynthetically active seedlings high levels of phyA counteract the shade avoidance response. phyA levels are maintained low in light-grown plants by a combination of light-dependent repression of PHYA transcription and light-induced proteasome-mediated degradation of the activated photoreceptor. Light-activated phyA is transported from the cytoplasm where it resides in darkness to the nucleus where it is needed for most phytochrome-induced responses. Here we show that phyA is degraded by a proteasome-dependent mechanism both in the cytoplasm and the nucleus. However, phyA degradation is significantly slower in the cytoplasm than in the nucleus. In the nucleus phyA is degraded in a proteasome-dependent mechanism even in its inactive Pr (red light absorbing) form, preventing the accumulation of high levels of nuclear phyA in darkness. Thus, light-induced degradation of phyA is in part controlled by a light-regulated import into the nucleus where the turnover is faster. Although most phyA responses require nuclear phyA it might be useful to maintain phyA in the cytoplasm in its inactive form to allow accumulation of high levels of the light sensor in etiolated seedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C4-dicarboxylates are one of the preferred carbon and energy sources for the growth of P. aeruginosa, a ubiquitous and metabolically versatile bacterium. However, despite their importance, C4-dicarboxylates sensing and uptake systems were poorly understood in P. aeruginosa and only little information was available in the literature. In our work, the C4-dicarboxylate transport (Dct) system in P. aeruginosa was found to be composed of a novel two-component system, called DctB/DctD, regulating together with the sigma factor RpoN the expression of two newly identified C4-dicarboxylate transporters: DctA and DctPQM. Inactivation of the dct A, dctB or dctD gene caused a growth defect of the strain in minimal media supplemented with succinate, fumarate or malate, indicating their major role in Dct. However, residual growth of the dctA mutant in these media suggested the presence of redundant C4-dicarboxylate transporter(s). Tn5 insertion mutagenesis of the kdctA mutant, combined with a screening for growth on succinate, led to the identification of a second Dct system, the DctPQM transporter, belonging to the tripartite ATP-independent periplasmic (TRAP) family of carriers. AdctAAdctPQM double mutant showed no growth on malate and fumarate albeit residual growth on succinate suggested that additional transporters for succinate are present. Competition experiments demonstrated that the DctPQM carrier was more efficient than the DctA carrier for the utilization of succinate at μΜ concentrations, whereas DctA was the major transporter at mM concentrations. For the first time, high- and low-affinity uptake systems for succinate (DctA and DctPQM) are reported to function co-ordinately to transport C4- dicarboxylates. Most probably, the presence of redundant uptake systems contributes to the versatility of this bacterium. Next, the regulation of the Dct system was investigated. While performing a parallel study about the carbon catabolite repression (CCR) phenomenon in P. aeruginosa, a link between the CCR cascade (CbrAB/CrcZ/Crc) and the Dct system was observed. Crc is a translational repressor acting when preferred carbon sources (like C4-dicarboxylates) are present. CrcZ is a small RNA acting as a functional antagonist of Crc and induced by the CbrA/CbrB two-component system when non preferred carbon sources (like mannitol) are utilized. Novel targets of the CbrAB/CrcZ/Crc system in P. aeruginosa were identified using transcriptome analysis; among them dctA and dctPQM were detected. CCR is regulating the dct transporter genes expression depending on the succinate concentrations in the medium of growth; this modulation of CCR is possible because, at the same time, succinate concentrations tune CCR. In a medium containing high succinate concentrations, CrcZ levels were low and therefore Crc inhibited the translation of mRNA targets. Whereas in a medium containing low succinate concentrations, the subsequent increase of CrcZ levels sequestered Crc, inhibiting its activity. This model shows for the first time that CCR possesses a feedback-based circuitry, a very important type of regulatory loop that confers the best adaptive response under changing environmental conditions. The expression of the dct transporter genes is also found to be regulated by the RNA chaperone protein Hfq. Hfq has the same post-transcriptional effect than Crc at high concentration of succinate, i.e. inhibiting dctP and dctR and indirectly favouring dctA expression. Moreover, an additional indirect positive regulation of dctP expression by Hfq was found. Finally, a metabolome approach was performed to investigate the internal signals modulating CCR via induction of CbrA activity in P. aeruginosa PAOl and P. putida KT2442. The results of the analysis are currently under study in the laboratory. - Les acides C4-dicarboxyliques font partie des sources de carbone et d'énergie préférés de P. aeruginosa, une bactérie versatile et ubiquitaire. Néanmoins, malgré leur importance, comment la présence des acides C4-dicarboxyliques dans le milieu est sentie par la bactérie et comment ils sont transportés dans la cellule chez P. aeruginosa n'étaient pas connus. De plus, peu d'informations sur ces procédés ont été répertoriées dans la littérature. Grace à notre travail, le système de transport des acides C4-dicarboxyliques (Dct) chez P. aeruginosa a pu être caractérisé. En effet, il est composé d'un nouveau système à deux composants, nommé DctB/DctD, qui régule, en combinaison avec le facteur sigma alternatif RpoN, l'expression des deux nouveaux transporteurs des acides C4-dicarboxyliques: DctA et DctPQM. L'inactivation des gènes dctA, dctB or dctD cause un défaut de croissance des souches mutantes dans un milieu minimum contenant du succinate, fumarate ou malate; confirmation de leur rôle dans le Dct. Cependant, une croissance résiduelle du mutant dctA dans ces milieux suggérerait une redondance des transporteurs d'acides Grdicarboxyliques. Une expérience de mutagenèse dans la souche AdctA, utilisant le transposon Tn5, combiné avec un criblage génétique sur la croissance dans le succinate, nous a permis d'identifier le deuxième transporteur DctPQM. DctPQM appartient à la famille des transporteurs TRAP (tripartite ATP-independent periplasmic). Un double mutant AdctAAdctPQM ne pousse pas dans du malate ou fumarate mais par contre présente une croissance résiduelle dans le succinate suggérant l'existence de transporteurs supplémentaires pour le succinate. En réalisant des expériences de compétitions nous avons démontré que le transporteur DctPQM est plus efficace que le transporteur DctA pour l'utilisation de succinate à une concentration de l'ordre du μΜ. Par contre, DctA est le transporteur le plus important pour une concentration de succinate de l'ordre du raM. Pour la première fois, deux systèmes de transport, un avec une forte- et un avec une faible-affinité (DctA et DctPQM) pour le succinate, sont coordonnés dans leur activité de transport des acides C4- dicarboxyliques, probablement contribuant à la versatilité de la bactérie. Ensuite, nous avons étudié la régulation du system Dct. En effectuant, en parallèle, une étude sur le phénomène de la répression catabolique (RC) chez P. aeruginosa, un lien entre la RC et le système Dct a été observé. La cascade des régulateurs formant la RC est composée de CbrA/CbrB, CrcZ et Crc. Crc est un répresseur traductionnel qui agit quand des sources de carbone préférées (comme les acides C4-dicarboxyliques) sont présentes dans le milieu. CrcZ est un petit ARN non-codant qui agit comme antagoniste de Crc. L'expression de CrcZ est induite par le système à deux composants CbrA/CbrB lorsque une source de carbone non-préférée est utilisée (comme le mannitol). Des nouvelles cibles du système CbrAB/CrcZ/Crc chez P. aeruginosa ont été identifiées grâce à une analyse du transcriptome des souches mutantes des régulateurs de la cascade. Parmi les cibles identifiées, les gènes dctA et dctPQM étaient présents. La RC régule l'expression des transporteurs dct en fonction de la concentration de succinate dans le milieu de croissance. Cette régulation est possible parce que, en même temps, les acides C4- dicarboxyliques régulent la RC. Dans un milieu contenant une grande concentration du succinate, le niveau d'expression de CrcZ est faible, donc Crc peut inhiber l'expression de ces ARN messagers cibles. Par contre, dans un milieu avec une faible concentration de succinate, l'augmentation de l'expression de CrcZ titre Crc et inhibe son activité. Ce modèle de régulation rétroactive est très important pour le phénomène de la RC, parce qu'il permet à la bactérie d'accorder une meilleure réponse à un changement environnemental. L'expression des gènes codant pour les transporteurs dct sont aussi régulés par la protéine chaperonne d'ARN Hfq. Hfq semble avoir le même effet traductionnelle que Crc, lorsqu'il y a une forte concentration de succinate. Nous avons ainsi observé une régulation négative de l'expression du gène dct Ρ et dctR, qui code pour un répresseur de la transcription de dctA. Nous avons aussi observé une régulation positive de la transcription de dctP par Hfq, probablement de façon indirecte. Enfin, une analyse du metabolome a était utilisée pour chercher les signaux internes modulant la RC et, en particulier, l'activité de la protéine senseur CbrA chez P. aeruginosa PAOl et P. putida KT2442. Les résultats de l'analyse sont en cours d'étude dans le laboratoire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En français (Fouet des 'fascinateurs' hérétiques) dont l'objectif est de prouver la réalité du sabbat des sorciers, dans le contexte du début de la répression de la sorcellerie démoniaque et des contestations qu'elle suscite dans certains lieux et milieux. Il y démontre en particulier la réalité des apparitions démoniaques et expose les moyens de ses protéger des assauts des démons. Il illustre son propos au moyen d'exemples scripturaires et surtout de récits des premiers martyrs et des Pères du désert empruntés au Speculum historiale de Vincent de Beauvais, qu'il recopie textuellement ou résume. Nicolas Jacquier montre ainsi une bonne connaissance d'ensemble de cette oeuvre. En Anglais "An attentive reader of Vincent de Beauvais' Speculum historiale in the XVth century : the Burgundian inquisitor Nicolas Jacquier and the reality of demonic apparitions." In 1458, the Dominican inquisitor Nicolas Jacquier writes his Flagellum hereticorum fascinariorum (Scourge of Heretical Witches), which aims at proving the reality of the witches' Sabbath. He pens this work in the context of the onset of the repression of diabolical witchcraft and the disputes which arise from it in certain places and circles. He in particular demonstrates the reality of demonic apparitions and exposes the means by which one is to protect oneself from the assaults of demons. He illustrates his subject by means of scriptural examples, making particular reference to the narratives of the first martyrs and of the Fathers of the desert borrowed from Vincent de Beauvais' Speculum historiale, that he either reproduces word for word, or summarizes. Nicolas Jacquier thus demonstrates a good knowledge of the entirety of this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterozygous mutations in the PRPF31 gene cause autosomal dominant retinitis pigmentosa (adRP), a hereditary disorder leading to progressive blindness. In some cases, such mutations display incomplete penetrance, implying that certain carriers develop retinal degeneration while others have no symptoms at all. Asymptomatic carriers are protected from the disease by a higher than average expression of the PRPF31 allele that is not mutated, mainly through the action of an unknown modifier gene mapping to chromosome 19q13.4. We investigated a large family with adRP segregating an 11-bp deletion in PRPF31. The analysis of cell lines derived from asymptomatic and affected individuals revealed that the expression of only one gene among a number of candidates within the 19q13.4 interval significantly correlated with that of PRPF31, both at the mRNA and protein levels, and according to an inverse relationship. This gene was CNOT3, encoding a subunit of the Ccr4-not transcription complex. In cultured cells, siRNA-mediated silencing of CNOT3 provoked an increase in PRPF31 expression, confirming a repressive nature of CNOT3 on PRPF31. Furthermore, chromatin immunoprecipitation revealed that CNOT3 directly binds to a specific PRPF31 promoter sequence, while next-generation sequencing of the CNOT3 genomic region indicated that its variable expression is associated with a common intronic SNP. In conclusion, we identify CNOT3 as the main modifier gene determining penetrance of PRPF31 mutations, via a mechanism of transcriptional repression. In asymptomatic carriers CNOT3 is expressed at low levels, allowing higher amounts of wild-type PRPF31 transcripts to be produced and preventing manifestation of retinal degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress β-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPARγ coactivator 1α (Pgc1α) and expression of β-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1α and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1α regulatory axis, Hif1α negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CbrA/B system in pseudomonads is involved in the utilization of carbon sources and carbon catabolite repression (CCR) through the activation of the small RNAs crcZ in Pseudomonas aeruginosa, and crcZ and crcY in Pseudomonas putida. Interestingly, previous works reported that the CbrA/B system activity in P. aeruginosa PAO1 and P. putida KT2442 responded differently to the presence of different carbon sources, thus raising the question of the exact nature of the signal(s) detected by CbrA. Here, we demonstrated that the CbrA/B/CrcZ(Y) signal transduction pathway is similarly activated in the two Pseudomonas species. We show that the CbrA sensor kinase is fully interchangeable between the two species and, moreover, responds similarly to the presence of different carbon sources. In addition, a metabolomics analysis supported the hypothesis that CCR responds to the internal energy status of the cell, as the internal carbon/nitrogen ratio seems to determine CCR and non-CCR conditions. The strong difference found in the 2-oxoglutarate/glutamine ratio between CCR and non-CCR conditions points to the close relationship between carbon and nitrogen availability, or the relationship between the CbrA/B and NtrB/C systems, suggesting that both regulatory systems sense the same sort or interrelated signal.