648 resultados para Reparo de dutos
Resumo:
Sugarcane is an important culture for Brazil that holds almost half of all worldwide productivity. Plants face many challenges, because of biotic and abiotic stresses presents in the production field, which could prevent plants from reaching their genetic potential. As consequence, those stresses can generate Reactive Oxygen Species – ROS – that can cause damages on DNA. Another consequence of stress is the early-flowering process, which contributes for a reduction on yield. In this context, the aim of this work is to characterize ScMUTM1 and ScMUTM2, two DNA glycosylases belonging to base excision repair pathway; and identify genes potentially related to stress and DNA repair in two sugarcane cultivars with contrasting flowering phenotypes. The characterization of the DNA glycosylases included the construction of vector to over express the recombinant proteins ScMUTM1 and ScMUTM2; they will be used in a near future to purification of these proteins and use in enzymatic assays. It was also made a phylogenetic reconstruction of this gene in plants and analysis of its promoter. With the phylogenetic analysis, it is possible to observe the presence of these genes grouped inside a branch with monocots and another one with dicots. This suggests that the duplication of this gene probably occurred after the separation of these two groups. The analysis of the promotor of MUTM shows of the presence of stress-related regulatory motifs at ScMUTM2 promoter, when compared with ScMUTM1. This may suggests that ScMUTM1 might be suffering sub functionalization process. After the analysis of microarrays data, it is observed an up-regulation from some stress-related genes in one of the conditions analyzed, related to early flowering process.
Resumo:
Sugarcane is an important culture for Brazil that holds almost half of all worldwide productivity. Plants face many challenges, because of biotic and abiotic stresses presents in the production field, which could prevent plants from reaching their genetic potential. As consequence, those stresses can generate Reactive Oxygen Species – ROS – that can cause damages on DNA. Another consequence of stress is the early-flowering process, which contributes for a reduction on yield. In this context, the aim of this work is to characterize ScMUTM1 and ScMUTM2, two DNA glycosylases belonging to base excision repair pathway; and identify genes potentially related to stress and DNA repair in two sugarcane cultivars with contrasting flowering phenotypes. The characterization of the DNA glycosylases included the construction of vector to over express the recombinant proteins ScMUTM1 and ScMUTM2; they will be used in a near future to purification of these proteins and use in enzymatic assays. It was also made a phylogenetic reconstruction of this gene in plants and analysis of its promoter. With the phylogenetic analysis, it is possible to observe the presence of these genes grouped inside a branch with monocots and another one with dicots. This suggests that the duplication of this gene probably occurred after the separation of these two groups. The analysis of the promotor of MUTM shows of the presence of stress-related regulatory motifs at ScMUTM2 promoter, when compared with ScMUTM1. This may suggests that ScMUTM1 might be suffering sub functionalization process. After the analysis of microarrays data, it is observed an up-regulation from some stress-related genes in one of the conditions analyzed, related to early flowering process.
Resumo:
Diabetes Mellitus (DM ) is a complex disease that requires continuous medical care for the reduction of risk factors in addition to glycemic control. The typical hyperglycemia of this disease produces glycosylation of proteins and so the consequence is the accumulation of glycosylation final products in various human tissues, among them, the tendon. The aerobic exercise (AE) and the low level laser therapy (LLLT) have been used to treat tendinopathies in individuals with or without DM. Objective: The aim of this study was to watch the effect of the LLLT and the AE, in association, in partial tenotomy of the tissue repair of the Achilles tendon (AT) of diabetic rats. Methods: 91 animals were utilized and divided in to the following groups: control group (GC), injured control group (GCL), diabetic group (GD), diabetic group LLLT (GD – TLBI), diabetic group trained (GD - EX) and diabetic group trained laser (GD-EX+TLBI). The animals were submitted to intervention with AE, using a protocol with a progressive increase of time (12 to 60 min) and speed of (4 to 9 m/min), and the LLLT (660 nm laser, 10mW, 4 J/cm², single point for 16 seconds, three times for week). It was analyzed morphological, biomechanical and molecular characteristics. For data showing normal distribution was used one-way ANOVA test and post hoc Tukey and data without normal distribution was used Mann Whitney test and post hoc Dunn's. It was accepted p <0.05 for statistical significance Results: The biomechanical tests indicated major improvement in the GC and GD-EX+TLBI groups when compared with the diabetic groups in the following variables: maximum load, strain, absorbed energy, stress, cross section area, elastic modulus and energy density (p<0.05). The analysis through molecular biology indicated that the association of aerobic exercise and LLLT generated an increase of the collagen I gene expression and modulated the expression of the MMP2 and MMP9 (p<0.05). No observed any major improvement in the morphological variable studied. Conclusion: the LLLT associated with aerobic exercise promotes and increase of the mechanical properties, in the control of collagen I gene expression and of the MMP2 and MMP9 of the diabetic rats.
Resumo:
Faults in the genes responsible for repairs to the DNA can influence the onset of cancer or affect the response to treatment. This research evaluated the frequency of three single nucleotide polymorphisms (SNPs) in two repair genes DNA RAD51 172g> T (rs1801321), RAD51 135G> C (rs1801320) and XRCC3 T241M (rs861539) in individuals without cancer (n = 130) and patients with oral squamous cell carcinoma (OSC) and carcinoma oropharyngeal squamous (ORSC) (n = 126) and investigated possible relationships of these findings with clinical and pathological data and clinical outcomes: tumor response to radiotherapy and chemotherapy, disease-free survival, and overall survival. It was found that the allele and genotype frequencies were in equilibrium Hard-Weinberg equilibrium. The presence of at least one polymorphic allele in XRCC3 (rs861539) gene is associated with histological grade (WHO) higher (p = 0.007). We observed a higher recurrence rate trend (p = 0.08) and more advanced stage (p = 0.08) in the group that had at least one polymorphic allele of RAD51 gene (rs1801321). The presence of the analyzed SNPs not proved to be a risk factor for the development of CEO or CEOR; however, when combined with smoking or drinking, increased the risk of developing cancer from three to one hundred and fifty times. The tumor response to radiotherapy and chemotherapy was similar in patients with and without SNPs. No polymorphism showed statistical significance in relation to recurrence-free survival or overall survival. We conclude that the presence of at least one polymorphic allele of the SNPs rs861539 in XRCC3 gene, rs1801320 and rs1801321 in the RAD51 gene increase the risk of development of OSC and ORSC, when associated with the habit of drinking or smoking. Polymorphisms studied in XRCC3 and RAD51 genes are not associated with response to radiation therapy, relapse-free survival or overall survival.
Resumo:
The chronic state of hyperglycemia due to diabetes mellitus affects multiples organs impairing life quality. In bone, diabetes alters strength and mineral density and also suppresses the osteoblast activity, leading to an unbalanced bone healing process. Hyperbaric oxygen therapy (HBO) is suggested as an adjuvant treatment to accelerate bone repair. This study evaluated the effects of HBO in the number of mast cells and in new bone formation at the initial stage of bone repair in normoglycemic and diabetic rats. It was hypothesized that HBO treatment may improve bone repair in diabetic bone. The rats were equally divided in four groups: Control (C); Control + HBO (CH); Diabetes (D) and Diabetes + HBO (DH). Diabetes was induced by streptozotocin (65mg/kg) and femoral bone defects were created thirty days after diabetes induction in all groups. HBO initiated immediately after surgery procedure and was performed daily, for 7 days, in the CH e DH groups. Seven days after surgery, all animals were euthanized. The femur diaphyses were removed, fixated, decalcified and processed for paraffin embedding. The semi-serial histological sections obtained were stained with Hematoxylin-Eosin (HE), Mallory Trichrome and Toluidine Blue. The qualitative analysis was conducted in the histology slides stained with HE, where it was evaluated the morphological aspects of bone repair in the lesion area, observing the presence of clot, inflammatory cells, granulation tissue, type of bone tissue, morphology of bone cells, and thickness and organization of bone trabeculae. In the slides stained with Mallory Trichrome and Toluidine Blue were evaluated the percentage of new bone formation and number of mast cells, respectively. The qualitative analysis showed that the CH group presented a more advanced stage of bone repair compared to the C group, showing thicker trabeculae and greater bone filling of the lesion area. In D and DH group, the lesion area was partially filled with new bone formation tissue and presented thinner trabeculae and fewer areas associated to osteoclasts compared to control group. The histomorphometric analysis showed a significant improvement in new bone formation (p<0.001) comparing CH (38.08 ± 4.05) and C (32.05 ± 5.51); C and D (24.62 ± 2.28 and CH and DH (27.14 ± 4.21) groups. In the normoglycemic rats there was a significant increasing in the number of mast cells (p<0.05) comparing C (8.06 ± 5.15) and CH (21.06 ± 4.91) groups. In conclusion, this study showed that diabetes impaired bone repair and HBO was only able to increase new bone formation and the number of mast cells in the normoglycemic animals.
Resumo:
Welding is one of the most employed process for joining steel pipes. Although, manual welding is still the most used one, mechanized version and even automatized one have increased its demand. Thus, this work deals with girth welding of API 5L X65 pipes with 8” of nominal diameter and 8.0 mm thickness, beveled with V-30º narrow gap. Torch is moved by a bug carrier (mechanized welding) and further the parameters are controlled as a function of angular position (automatized welding). Welding parameters are presented for filling the joint with two-passes (root and filling/capping passes). Parameters for the root pass were extracted from previous author´s work with weldments carried out in plates, but validated in this work for pipe welding. GMAW processes were assessed with short-circuit metal transfer in both conventional and derivative modes using different technologies (RMD, STT and CMT). After the parameter determination, mechanical testing was performed for welding qualification (uniaxial tension, face and root bending, nick break, Charpy V-notch impact, microhardness and macrograph). The initially obtained results for RMD and CMT were acceptable for all testing and, in a second moment, also for the STT. However, weld beads carried out by using the conventional process failed and revealed the existence of lack of fusion, which required further parametrization. Thus, a Parameter-Variation System for Girth Welding (SVP) was designed and built to allow varying the welding parameters as a function of angular position by using an inclinometer. The parameters were set for each of the three angular positions (flat, vertical downhill and overhead). By using such equipment and approach, the conventional process with parameter variation allowed reducing the welding time for joint accomplishment of the order of 38% for the root pass and 30% for the filling/capping pass.
Resumo:
studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins
Resumo:
The genome of all organisms constantly suffers the influence of mutagenic factors from endogenous and/or exogenous origin, which may result in damage for the genome. In order to keep the genome integrity there are different DNA repair pathway to detect and correct these lesions. In relation to the plants as being sessile organisms, they are exposed to this damage frequently. The Base Excision DNA Repair (BER) is responsible to detect and repair oxidative lesions. Previous work in sugarcane identified two sequences that were homologous to Arabidopsis thaliana: ScARP1 ScARP3. These two sequences were homologous to AP endonuclease from BER pathway. Then, the aim of this work was to characterize these two sequence using different approaches: phylogenetic analysis, in silico protein organelle localization and by Nicotiana tabacum transgenic plants with overexpression cassette. The in silico data obtained showed a duplication of this sequence in sugarcane and Poaceae probably by a WGD event. Furthermore, in silico analysis showed a new localization in nuclei for ScARP1 protein. The data obtained with transgenic plants showed a change in development and morphology. Transgenic plants had slow development when compared to plants not transformed. Then, these results allowed us to understand better the potential role of this sequence in sugarcane and in plants in general. More work is important to be done in order to confirm the protein localization and protein characterization for ScARP1 and ScARP3
Resumo:
In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Faculdade de Tecnologia, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2016.
Resumo:
The efficiency of inhibition to corrosion of steel AISI 1018 of surfactant coconut oil saponified (SCO) and heterocyclic type mesoionics (1,3,4-triazólio-2-tiolato) in systems microemulsionados (SCO-ME and SCO-ME-MI) Of type O/A (rich in water emulsion) region with the work of Winsor IV. The systems microemulsionados (SCO-ME and SCO-ME-MI) were evaluated with a corrosion inhibitor for use in saline 10,000 ppm of chloride enriched with carbon dioxide (CO2). The assessment of corrosion inhibitors were evaluated by the techniques of linear polarization resistance (LPR) and loss of weight (MW) in a cell instrumented given the gravity and electrochemical devices. The systems were shooting speed of less than 60 minutes and efficiency of inhibition [SCO-ME (91.25%) and SCO-ME-MI (98.54%)]
Resumo:
The transport of fluids through pipes is used in the oil industry, being the pipelines an important link in the logistics flow of fluids. However, the pipelines suffer deterioration in their walls caused by several factors which may cause loss of fluids to the environment, justifying the investment in techniques and methods of leak detection to minimize fluid loss and environmental damage. This work presents the development of a supervisory module in order to inform to the operator the leakage in the pipeline monitored in the shortest time possible, in order that the operator log procedure that entails the end of the leak. This module is a component of a system designed to detect leaks in oil pipelines using sonic technology, wavelets and neural networks. The plant used in the development and testing of the module presented here was the system of tanks of LAMP, and its LAN, as monitoring network. The proposal consists of, basically, two stages. Initially, assess the performance of the communication infrastructure of the supervisory module. Later, simulate leaks so that the DSP sends information to the supervisory performs the calculation of the location of leaks and indicate to which sensor the leak is closer, and using the system of tanks of LAMP, capture the pressure in the pipeline monitored by piezoresistive sensors, this information being processed by the DSP and sent to the supervisory to be presented to the user in real time
Resumo:
With the increasing of demand for natural gas and the consequent growth of the pipeline networks, besides the importance of transport and transfer of oil products by pipeline, and when it comes to product quality and integrity of the pipeline there is an important role regarding to the monitoring internal corrosion of the pipe. This study aims to assess corrosion in three pipeline that operate with different products, using gravimetric techniques and electrical resistance. Chemical analysis of residues originated in the pipeline helps to identify the mechanism corrosive process. The internal monitoring of the corrosion in the pipelines was carried out between 2009 and 2010 using coupon weight loss and electrical resistance probe. Physico-chemical techniques of diffraction and fluorescence X-rays were used to characterize the products of corrosion of the pipelines. The corrosion rate by weight loss was analyzed for every pipeline, only those ones that has revealed corrosive attack were analyzed located corrosion rate. The corrosion potential was classified as low to pipeline gas and ranged from low to severe for oil pipelines and the pipeline derivatives. Corrosion products were identified as iron carbonate, iron oxide and iron sulfide
Resumo:
Riboflavin is a vitamin very important in aerobic organisms, as a precursor of many coenzymes involved in the electron transporter chain. However, after photosensitization of riboflavin with UV or visible light, it generates reactive oxygen species (ROS), which can oxidize the DNA. The repair of oxidative lesions on DNA occurs through the base excision repair pathway (BER), where APE1 endonuclease plays a central role. On the other hand, the nucleotide excision repair pathway (NER) repairs helix-distorting lesions. Recently, it was described the participation of NERproteins in the repair of oxidative damage and in stimulation of repair function fromAPE1. The aim of this research was to evaluate the cytotoxic effects of photosensitized riboflavin (RF*) in cells proficient and deficient in NER, correlating with APE1 expression. For this propose, the cells were treated with RF* and it was performed the cell viability assay, extraction of whole proteins, cells fractionation, immunoblotting, indirect immunofluorescence and analysis of polymorphisms of BER gens. The results evidenced that cells deficient in XPA and CSB proteins were more sensitive to RF*. However, XPC-deficient cells presented similar resistance to MRC5- SV cells, which is proficient in NER. These results indicate that XPA and CSB proteins have an important role on repair of oxidative lesions induced by RF*. Additionally, it was evidenced that single nucleotide polymorphisms (SNPs) in BER enzymes may influence in sensitivity of NER-deficient cell lines. Concerning the APE1 expression, the results showed that expression of this protein after treatment with RF* only changed in XPC-deficient cells. Though, it was observed that APE1 is recruited and is bound to chromatin in MRC5-SV and XPA cells after treatment with RF*. The results also showed the induction of DNA damage after treatment with RF*, through the analysis of-H2AX, since the treatment promoted an increase of endogenous levels of this phosphorylated protein, which acts signaling double strand-break on DNA. On the other hand, in XPC-deficient cells, regardless of resistance of RF*, the endogenous levels of APE1 are extremely reduced when compared with other cell lines and APE1 is not bound to chromatin after treatment with RF*. These results conclude that RF* was able to induce cell death in NERdeficient cells, where XPA and CSB cells were more sensitive when compared with MRC5-SV and XPC-deficient cells. This last result is potentially very interesting, since XPC-deficient cell line presents low levels of APE1. Additionally, the results evidenced that APE1 protein can be involved in the repair of oxidative damage induced by RF*, because APE1 is recruited and bound strongly to chromatin after treatment.