882 resultados para Regulation-based classification system
Resumo:
National meteorological offices are largely concerned with synoptic-scale forecasting where weather predictions are produced for a whole country for 24 hours ahead. In practice, many local organisations (such as emergency services, construction industries, forestry, farming, and sports) require only local short-term, bespoke, weather predictions and warnings. This thesis shows that the less-demanding requirements do not require exceptional computing power and can be met by a modern, desk-top system which monitors site-specific ground conditions (such as temperature, pressure, wind speed and direction, etc) augmented with above ground information from satellite images to produce `nowcasts'. The emphasis in this thesis has been towards the design of such a real-time system for nowcasting. Local site-specific conditions are monitored using a custom-built, stand alone, Motorola 6809 based sub-system. Above ground information is received from the METEOSAT 4 geo-stationary satellite using a sub-system based on a commercially available equipment. The information is ephemeral and must be captured in real-time. The real-time nowcasting system for localised weather handles the data as a transparent task using the limited capabilities of the PC system. Ground data produces a time series of measurements at a specific location which represents the past-to-present atmospheric conditions of the particular site from which much information can be extracted. The novel approach adopted in this thesis is one of constructing stochastic models based on the AutoRegressive Integrated Moving Average (ARIMA) technique. The satellite images contain features (such as cloud formations) which evolve dynamically and may be subject to movement, growth, distortion, bifurcation, superposition, or elimination between images. The process of extracting a weather feature, following its motion and predicting its future evolution involves algorithms for normalisation, partitioning, filtering, image enhancement, and correlation of multi-dimensional signals in different domains. To limit the processing requirements, the analysis in this thesis concentrates on an `area of interest'. By this rationale, only a small fraction of the total image needs to be processed, leading to a major saving in time. The thesis also proposes an extention to an existing manual cloud classification technique for its implementation in automatically classifying a cloud feature over the `area of interest' for nowcasting using the multi-dimensional signals.
Resumo:
When constructing and using environmental models, it is typical that many of the inputs to the models will not be known perfectly. In some cases, it will be possible to make observations, or occasionally physics-based uncertainty propagation, to ascertain the uncertainty on these inputs. However, such observations are often either not available or even possible, and another approach to characterising the uncertainty on the inputs must be sought. Even when observations are available, if the analysis is being carried out within a Bayesian framework then prior distributions will have to be specified. One option for gathering or at least estimating this information is to employ expert elicitation. Expert elicitation is well studied within statistics and psychology and involves the assessment of the beliefs of a group of experts about an uncertain quantity, (for example an input / parameter within a model), typically in terms of obtaining a probability distribution. One of the challenges in expert elicitation is to minimise the biases that might enter into the judgements made by the individual experts, and then to come to a consensus decision within the group of experts. Effort is made in the elicitation exercise to prevent biases clouding the judgements through well-devised questioning schemes. It is also important that, when reaching a consensus, the experts are exposed to the knowledge of the others in the group. Within the FP7 UncertWeb project (http://www.uncertweb.org/), there is a requirement to build a Webbased tool for expert elicitation. In this paper, we discuss some of the issues of building a Web-based elicitation system - both the technological aspects and the statistical and scientific issues. In particular, we demonstrate two tools: a Web-based system for the elicitation of continuous random variables and a system designed to elicit uncertainty about categorical random variables in the setting of landcover classification uncertainty. The first of these examples is a generic tool developed to elicit uncertainty about univariate continuous random variables. It is designed to be used within an application context and extends the existing SHELF method, adding a web interface and access to metadata. The tool is developed so that it can be readily integrated with environmental models exposed as web services. The second example was developed for the TREES-3 initiative which monitors tropical landcover change through ground-truthing at confluence points. It allows experts to validate the accuracy of automated landcover classifications using site-specific imagery and local knowledge. Experts may provide uncertainty information at various levels: from a general rating of their confidence in a site validation to a numerical ranking of the possible landcover types within a segment. A key challenge in the web based setting is the design of the user interface and the method of interacting between the problem owner and the problem experts. We show the workflow of the elicitation tool, and show how we can represent the final elicited distributions and confusion matrices using UncertML, ready for integration into uncertainty enabled workflows.We also show how the metadata associated with the elicitation exercise is captured and can be referenced from the elicited result, providing crucial lineage information and thus traceability in the decision making process.
Resumo:
Task classification is introduced as a method for the evaluation of monitoring behaviour in different task situations. On the basis of an analysis of different monitoring tasks, a task classification system comprising four task 'dimensions' is proposed. The perceptual speed and flexibility of closure categories, which are identified with signal discrimination type, comprise the principal dimension in this taxonomy, the others being sense modality, the time course of events, and source complexity. It is also proposed that decision theory provides the most complete method for the analysis of performance in monitoring tasks. Several different aspects of decision theory in relation to monitoring behaviour are described. A method is also outlined whereby both accuracy and latency measures of performance may be analysed within the same decision theory framework. Eight experiments and an organizational study are reported. The results show that a distinction can be made between the perceptual efficiency (sensitivity) of a monitor and his criterial level of response, and that in most monitoring situations, there is no decrement in efficiency over the work period, but an increase in the strictness of the response criterion. The range of tasks exhibiting either or both of these performance trends can be specified within the task classification system. In particular, it is shown that a sensitivity decrement is only obtained for 'speed' tasks with a high stimulation rate. A distinctive feature of 'speed' tasks is that target detection requires the discrimination of a change in a stimulus relative to preceding stimuli, whereas in 'closure' tasks, the information required for the discrimination of targets is presented at the same point In time. In the final study, the specification of tasks yielding sensitivity decrements is shown to be consistent with a task classification analysis of the monitoring literature. It is also demonstrated that the signal type dimension has a major influence on the consistency of individual differences in performance in different tasks. The results provide an empirical validation for the 'speed' and 'closure' categories, and suggest that individual differences are not completely task specific but are dependent on the demands common to different tasks. Task classification is therefore shovn to enable improved generalizations to be made of the factors affecting 1) performance trends over time, and 2) the consistencv of performance in different tasks. A decision theory analysis of response latencies is shown to support the view that criterion shifts are obtained in some tasks, while sensitivity shifts are obtained in others. The results of a psychophysiological study also suggest that evoked potential latency measures may provide temporal correlates of criterion shifts in monitoring tasks. Among other results, the finding that the latencies of negative responses do not increase over time is taken to invalidate arousal-based theories of performance trends over a work period. An interpretation in terms of expectancy, however, provides a more reliable explanation of criterion shifts. Although the mechanisms underlying the sensitivity decrement are not completely clear, the results rule out 'unitary' theories such as observing response and coupling theory. It is suggested that an interpretation in terms of the memory data limitations on information processing provides the most parsimonious explanation of all the results in the literature relating to sensitivity decrement. Task classification therefore enables the refinement and selection of theories of monitoring behaviour in terms of their reliability in generalizing predictions to a wide range of tasks. It is thus concluded that task classification and decision theory provide a reliable basis for the assessment and analysis of monitoring behaviour in different task situations.
Resumo:
This thesis presents a thorough and principled investigation into the application of artificial neural networks to the biological monitoring of freshwater. It contains original ideas on the classification and interpretation of benthic macroinvertebrates, and aims to demonstrate their superiority over the biotic systems currently used in the UK to report river water quality. The conceptual basis of a new biological classification system is described, and a full review and analysis of a number of river data sets is presented. The biological classification is compared to the common biotic systems using data from the Upper Trent catchment. This data contained 292 expertly classified invertebrate samples identified to mixed taxonomic levels. The neural network experimental work concentrates on the classification of the invertebrate samples into biological class, where only a subset of the sample is used to form the classification. Other experimentation is conducted into the identification of novel input samples, the classification of samples from different biotopes and the use of prior information in the neural network models. The biological classification is shown to provide an intuitive interpretation of a graphical representation, generated without reference to the class labels, of the Upper Trent data. The selection of key indicator taxa is considered using three different approaches; one novel, one from information theory and one from classical statistical methods. Good indicators of quality class based on these analyses are found to be in good agreement with those chosen by a domain expert. The change in information associated with different levels of identification and enumeration of taxa is quantified. The feasibility of using neural network classifiers and predictors to develop numeric criteria for the biological assessment of sediment contamination in the Great Lakes is also investigated.
Resumo:
Design of casting entails the knowledge of various interacting factors that are unique to casting process, and, quite often, product designers do not have the required foundry-specific knowledge. Casting designers normally have to liaise with casting experts in order to ensure the product designed is castable and the optimum casting method is selected. This two-way communication results in long design lead times, and lack of it can easily lead to incorrect casting design. A computer-based system at the discretion of a design engineer can, however, alleviate this problem and enhance the prospect of casting design for manufacture. This paper proposes a knowledge-based expert system approach to assist casting product designers in selecting the most suitable casting process for specified casting design requirements, during the design phase of product manufacture. A prototype expert system has been developed, based on production rules knowledge representation technique. The proposed system consists of a number of autonomous but interconnected levels, each dealing with a specific group of factors, namely, casting alloy, shape and complexity parameters, accuracy requirements and comparative costs, based on production quantity. The user interface has been so designed to allow the user to have a clear view of how casting design parameters affect the selection of various casting processes at each level; if necessary, the appropriate design changes can be made to facilitate the castability of the product being designed, or to suit the design to a preferred casting method.
Resumo:
ACM Computing Classification System (1998): H3.3, H.5.5, J5.
Resumo:
ACM Computing Classification System (1998): K.3.1, K.3.2.
Resumo:
In this paper we propose a refinement of some successive overrelaxation methods based on the reverse Gauss–Seidel method for solving a system of linear equations Ax = b by the decomposition A = Tm − Em − Fm, where Tm is a banded matrix of bandwidth 2m + 1. We study the convergence of the methods and give software implementation of algorithms in Mathematica package with numerical examples. ACM Computing Classification System (1998): G.1.3.
Resumo:
We describe an approach for recovering the plaintext in block ciphers having a design structure similar to the Data Encryption Standard but with improperly constructed S-boxes. The experiments with a backtracking search algorithm performing this kind of attack against modified DES/Triple-DES in ECB mode show that the unknown plaintext can be recovered with a small amount of uncertainty and this algorithm is highly efficient both in time and memory costs for plaintext sources with relatively low entropy. Our investigations demonstrate once again that modifications resulting to S-boxes which still satisfy some design criteria may lead to very weak ciphers. ACM Computing Classification System (1998): E.3, I.2.7, I.2.8.
Classification of Paintings by Artist, Movement, and Indoor Setting Using MPEG-7 Descriptor Features
Resumo:
ACM Computing Classification System (1998): I.4.9, I.4.10.
Resumo:
Today, modern System-on-a-Chip (SoC) systems have grown rapidly due to the increased processing power, while maintaining the size of the hardware circuit. The number of transistors on a chip continues to increase, but current SoC designs may not be able to exploit the potential performance, especially with energy consumption and chip area becoming two major concerns. Traditional SoC designs usually separate software and hardware. Thus, the process of improving the system performance is a complicated task for both software and hardware designers. The aim of this research is to develop hardware acceleration workflow for software applications. Thus, system performance can be improved with constraints of energy consumption and on-chip resource costs. The characteristics of software applications can be identified by using profiling tools. Hardware acceleration can have significant performance improvement for highly mathematical calculations or repeated functions. The performance of SoC systems can then be improved, if the hardware acceleration method is used to accelerate the element that incurs performance overheads. The concepts mentioned in this study can be easily applied to a variety of sophisticated software applications. The contributions of SoC-based hardware acceleration in the hardware-software co-design platform include the following: (1) Software profiling methods are applied to H.264 Coder-Decoder (CODEC) core. The hotspot function of aimed application is identified by using critical attributes such as cycles per loop, loop rounds, etc. (2) Hardware acceleration method based on Field-Programmable Gate Array (FPGA) is used to resolve system bottlenecks and improve system performance. The identified hotspot function is then converted to a hardware accelerator and mapped onto the hardware platform. Two types of hardware acceleration methods – central bus design and co-processor design, are implemented for comparison in the proposed architecture. (3) System specifications, such as performance, energy consumption, and resource costs, are measured and analyzed. The trade-off of these three factors is compared and balanced. Different hardware accelerators are implemented and evaluated based on system requirements. 4) The system verification platform is designed based on Integrated Circuit (IC) workflow. Hardware optimization techniques are used for higher performance and less resource costs. Experimental results show that the proposed hardware acceleration workflow for software applications is an efficient technique. The system can reach 2.8X performance improvements and save 31.84% energy consumption by applying the Bus-IP design. The Co-processor design can have 7.9X performance and save 75.85% energy consumption.
Resumo:
Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10-100 km**2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10-1000 km**2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10-35 km**2) in Australia, Fiji, and Palau; and for three complex reef systems (300-600 km**2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: 'reef', 'reef type', 'geomorphic zone', and 'benthic community'. The overall accuracy of the 'geomorphic zone' classification for each of the six study sites was 76-82% using 6-10 mapping categories. For 'benthic community' classification, the overall accuracy was 52-75% with individual reefs having 14-17 categories and reef systems 20-30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.
Resumo:
Immunity is broadly defined as a mechanism of protection against non-self entities, a process which must be sufficiently robust to both eliminate the initial foreign body and then be maintained over the life of the host. Life-long immunity is impossible without the development of immunological memory, of which a central component is the cellular immune system, or T cells. Cellular immunity hinges upon a naïve T cell pool of sufficient size and breadth to enable Darwinian selection of clones responsive to foreign antigens during an initial encounter. Further, the generation and maintenance of memory T cells is required for rapid clearance responses against repeated insult, and so this small memory pool must be actively maintained by pro-survival cytokine signals over the life of the host.
T cell development, function, and maintenance are regulated on a number of molecular levels through complex regulatory networks. Recently, small non-coding RNAs, miRNAs, have been observed to have profound impacts on diverse aspects of T cell biology by impeding the translation of RNA transcripts to protein. While many miRNAs have been described that alter T cell development or functional differentiation, little is known regarding the role that miRNAs have in T cell maintenance in the periphery at homeostasis.
In Chapter 3 of this dissertation, tools to study miRNA biology and function were developed. First, to understand the effect that miRNA overexpression had on T cell responses, a novel overexpression system was developed to enhance the processing efficiency and ultimate expression of a given miRNA by placing it within an alternative miRNA backbone. Next, a conditional knockout mouse system was devised to specifically delete miR-191 in a cell population expressing recombinase. This strategy was expanded to permit the selective deletion of single miRNAs from within a cluster to discern the effects of specific miRNAs that were previously inaccessible in isolation. Last, to enable the identification of potentially therapeutically viable miRNA function and/or expression modulators, a high-throughput flow cytometry-based screening system utilizing miRNA activity reporters was tested and validated. Thus, several novel and useful tools were developed to assist in the studies described in Chapter 4 and in future miRNA studies.
In Chapter 4 of this dissertation, the role of miR-191 in T cell biology was evaluated. Using tools developed in Chapter 3, miR-191 was observed to be critical for T cell survival following activation-induced cell death, while proliferation was unaffected by alterations in miR-191 expression. Loss of miR-191 led to significant decreases in the numbers of CD4+ and CD8+ T cells in the periphery lymph nodes, but this loss had no impact on the homeostatic activation of either CD4+ or CD8+ cells. These peripheral changes were not caused by gross defects in thymic development, but rather impaired STAT5 phosphorylation downstream of pro-survival cytokine signals. miR-191 does not specifically inhibit STAT5, but rather directly targets the scaffolding protein, IRS1, which in turn alters cytokine-dependent signaling. The defect in peripheral T cell maintenance was exacerbated by the presence of a Bcl-2YFP transgene, which led to even greater peripheral T cell losses in addition to developmental defects. These studies collectively demonstrate that miR-191 controls peripheral T cell maintenance by modulating homeostatic cytokine signaling through the regulation of IRS1 expression and downstream STAT5 phosphorylation.
The studies described in this dissertation collectively demonstrate that miR-191 has a profound role in the maintenance of T cells at homeostasis in the periphery. Importantly, the manipulation of miR-191 altered immune homeostasis without leading to severe immunodeficiency or autoimmunity. As much data exists on the causative agents disrupting active immune responses and the formation of immunological memory, the basic processes underlying the continued maintenance of a functioning immune system must be fully characterized to facilitate the development of methods for promoting healthy immune function throughout the life of the individual. These findings also have powerful implications for the ability of patients with modest perturbations in T cell homeostasis to effectively fight disease and respond to vaccination and may provide valuable targets for therapeutic intervention.
Resumo:
Part 8: Business Strategies Alignment
Resumo:
Marine protection has been emphasized through global and European conventions which highlighted the need for the establishment of special areas of conservation. Classification and habitat mapping have been developed to enhance the assessment of marine environment and improve spatial and strategic planning of human activities and to help on the implementation of ecosystem based management. European Nature information System (EUNIS) is a comprehensive habitat classification system to facilitate the harmonised description and collection of habitat and biotopes that has been developed by the European Environment Agency (EEA) in collaboration with experts from institutions throughout Europe.