951 resultados para RNA interference (RNAi)
Resumo:
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Resumo:
In the intrinsic pathway of apoptosis, cell-damaging signals promote the release of cytochrome c from mitochondria, triggering activation of the Apaf-1 and caspase-9 apoptosome. The ubiquitin E3 ligase MDM2 decreases the stability of the proapoptotic factor p53. We show that it also coordinated apoptotic events in a p53-independent manner by ubiquitylating the apoptosome activator CAS and the ubiquitin E3 ligase HUWE1. HUWE1 ubiquitylates the antiapoptotic factor Mcl-1, and we found that HUWE1 also ubiquitylated PP5 (protein phosphatase 5), which indirectly inhibited apoptosome activation. Breast cancers that are positive for the tyrosine receptor kinase HER2 (human epidermal growth factor receptor 2) tend to be highly aggressive. In HER2-positive breast cancer cells treated with the HER2 tyrosine kinase inhibitor lapatinib, MDM2 was degraded and HUWE1 was stabilized. In contrast, in breast cancer cells that acquired resistance to lapatinib, the abundance of MDM2 was not decreased and HUWE1 was degraded, which inhibited apoptosis, regardless of p53 status. MDM2 inhibition overcame lapatinib resistance in cells with either wild-type or mutant p53 and in xenograft models. These findings demonstrate broader, p53-independent roles for MDM2 and HUWE1 in apoptosis and specifically suggest the potential for therapy directed against MDM2 to overcome lapatinib resistance.
Resumo:
Using A/J mice, which are susceptible to Staphylococcus aureus, we sought to identify genetic determinants of susceptibility to S. aureus, and evaluate their function with regard to S. aureus infection. One QTL region on chromosome 11 containing 422 genes was found to be significantly associated with susceptibility to S. aureus infection. Of these 422 genes, whole genome transcription profiling identified five genes (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) that were significantly differentially expressed in a) S. aureus -infected susceptible (A/J) vs. resistant (C57BL/6J) mice and b) humans with S. aureus blood stream infection vs. healthy subjects. Three of these genes (Dcaf7, Dusp3, and Psme3) were down-regulated in susceptible vs. resistant mice at both pre- and post-infection time points by qPCR. siRNA-mediated knockdown of Dusp3 and Psme3 induced significant increases of cytokine production in S. aureus-challenged RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) through enhancing NF-κB signaling activity. Similar increases in cytokine production and NF-κB activity were also seen in BMDMs from CSS11 (C57BL/6J background with chromosome 11 from A/J), but not C57BL/6J. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection.
Resumo:
Effective inhibitors of osteopontin (OPN)-mediated neoplastic transformation and metastasis are still lacking. (-)-Agelastatin A is a naturally occurring oroidin alkaloid with powerful antitumor effects that, in many cases, are superior to cisplatin in vitro. In this regard, past comparative assaying of the two agents against a range of human tumor cell lines has revealed that typically (-)-agelastatin A is 1.5 to 16 times more potent than cisplatin at inhibiting cell growth, its effects being most pronounced against human bladder, skin, colon, and breast carcinomas. In this study, we have investigated the effects of (-)-agelastatin A on OPN-mediated malignant transformation using mammary epithelial cell lines. Treatment with (-)-agelastatin A inhibited OPN protein expression and enhanced expression of the cellular OPN inhibitor, Tcf-4. (-)-Agelastatin A treatment also reduced beta-catenin protein expression and reduced anchorage-independent growth, adhesion, and invasion in R37 OPN pBK-CMV and C9 cell lines. Similar effects were observed in MDA-MB-231 and MDA-MB-435s human breast cancer cell lines exposed to (-)-agelastatin A. Suppression of Tcf-4 by RNA interference (short interfering RNA) induced malignant/invasive transformation in parental benign Rama 37 cells; significantly, these events were reversed by treatment with (-)-agelastatin A. Our study reveals, for the very first time, that (-)-agelastatin A down-regulates beta-catenin expression while simultaneously up-regulating Tcf-4 and that these combined effects cause repression of OPN and inhibition of OPN-mediated malignant cell invasion, adhesion, and colony formation in vitro. We have also shown that (-)-agelastatin A inhibits cancer cell proliferation by causing cells to accumulate in the G(2) phase of cell cycle.
Resumo:
Constitutive activation of nuclear factor (NF)-kappa B is linked with the intrinsic resistance of androgen-independent prostate cancer (AIPC) to cytotoxic chemotherapy. Interleukin-8 (CXCL8) is a transcriptional target of NF-kappa B whose expression is elevated in AIPC. This study sought to determine the significance of CXCL8 signaling in regulating the response of AIPC cells to oxaliplatin, a drug whose activity is reportedly sensitive to NF-kappa B activity. Administration of oxaliplatin to PC3 and DU145 cells increased NF-kappa B activity, promoting antiapoptotic gene transcription. In addition, oxaliplatin increased the transcription and secretion of CXCL8 and the related CXC-chemokine CXCL1 and increased the transcription and expression of CXC-chemokine receptors, especially CXC-chemokine receptor (CXCR) 2, which transduces the biological effects of CXCL8 and CXCL1. Stimulation of AIPC cells with CXCL8 potentiated NF-kappa B activation in AIPC cells, increasing the transcription and expression of NF-kappa B-regulated antiapoptotic genes of the Bcl-2 and IAP families. Coadministration of a CXCR2-selective antagonist, AZ10397767 (Bioorg Med Chem Lett 18:798-803, 2008), attenuated oxaliplatin-induced NF-kappa B activation, increased oxaliplatin cytotoxicity, and potentiated oxaliplatin-induced apoptosis in AIPC cells. Pharmacological inhibition of NF-kappa B or RNA interference-mediated suppression of Bcl-2 and survivin was also shown to sensitize AIPC cells to oxaliplatin. Our results further support NF-kappa B activity as an important determinant of cancer cell sensitivity to oxaliplatin and identify the induction of autocrine CXCR2 signaling as a novel mode of resistance to this drug.
Resumo:
Using RNA interference techniques to knock down key proteins in two major double-strand break (DSB) repair pathways (DNA-PKcs for nonhomologous end joining, NHEJ, and Rad54 for homologous recombination, HR), we investigated the influence of DSB repair factors on radiation mutagenesis at the autosomal thymidine kinase (TK) locus both in directly irradiated cells and in unirradiated bystander cells. We also examined the role of p53 (TP53) in these processes by using cells of three human lymphoblastoid cell lines from the same donor but with differing p53 status (TK6 is p53 wild-type, NH32 is p53 null, and WTK1 is p53 mutant). Our results indicated that p53 status did not affect either the production of radiation bystander mutagenic signals or the response to these signals. In directly irradiated cells, knockdown of DNA-PKcs led to an increased mutant fraction in WTK1 cells and decreased mutant fractions in TK6 and NH32 cells. In contrast, knockdown of DNA-PKcs led to increased mutagenesis in bystander cells regardless of p53 status. In directly irradiated cells, knockdown of Rad54 led to increased induced mutant fractions in WTK1 and NH32 cells, but the knockdown did not affect mutagenesis in p53 wild-type TK6 cells. In all cell lines, Rad54 knockdown had no effect on the magnitude of bystander mutagenesis. Studies with extracellular catalase confirmed the involvement of H2O2 in bystander signaling. Our results demonstrate that DSB repair factors have different roles in mediating mutagenesis in irradiated and bystander cells. (C) 2008 by Radiation Research Society.
Resumo:
Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11-19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Phagocytosis and activation of the NADPH oxidase are important mechanisms by which neutrophils and macrophages engulf and kill microbial pathogens. We investigated the role of PI3K signaling pathways in the regulation of the oxidase during phagocytosis of Staphylococcus aureus and Escherichia coli by mouse and human neutrophils, a mouse macrophage-like cell line and a human myeloid-like cell line. Phagocytosis of these bacteria was promoted by serum, independent of serum-derived antibodies, and effectively abolished in mouse neutrophils lacking the beta(2)-integrin common chain, CD18. A combination of PI3K isoform-selective inhibitors, mouse knock-outs, and RNA-interference indicated CD18-dependent activation of the oxidase was independent of class I and II PI3Ks, but substantially dependent on the single class III isoform (Vps34). Class III PI3K was responsible for the synthesis of PtdIns( 3) P on phagosomes containing either bacteria. The use of mouse neutrophils carrying an appropriate knock-in mutation indicated that PtdIns(3) P binding to the PX domain of their p40(phox) oxidase subunit is important for oxidase activation in response to both S aureus and E coli. This interaction does not, however, account for all the PI3K sensitivity of these responses, particularly the oxidase response to E coli, suggesting that additional mechanisms for PtdIns( 3) P-regulation of the oxidase must exist. ( Blood. 2008; 112: 5202-5211)
Resumo:
Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.
Resumo:
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.
Resumo:
We developed an analytic strategy that correlates gene expression and clinical outcomes as a means to identify novel candidate oncogenes operative in breast cancer. This analysis, followed by functional characterization, resulted in the identification of Jumonji Domain Containing 6 (JMJD6) protein as a novel driver of oncogenic properties in breast cancer.
Resumo:
Matrilysin-1 (also called matrix metalloproteinase-7) is expressed in injured lung and in cancer but not in normal epithelia. Bronchiolization of the alveoli (BOA), a potential precursor of lung cancer, is a histologically distinct type of metaplasia that is composed of cells resembling airway epithelium in the alveolar compartment. We demonstrate that there is increased expression of matrilysin-1 in human lesions and BOA in the CC10-human achaete-scute homolog-1 transgenic mouse model. Forced expression of the matrilysin-1 gene in immortalized human normal airway epithelial BEAS-2B and HPLD1 cells, which do not normally express matrilysin-1, promoted cellular migration, suggesting a functional link for BOA formation via bronchiolar cell migration. In addition, matrilysin-1 stimulated proliferation and inhibited Fas-induced apoptosis, while a knockdown by RNA interference decreased cell growth, migration, and increased sensitivity to apoptosis. Western blotting demonstrated increased levels of phospho-p38 and phospho-Erk1/2 kinases after matrilysin-1 expression. Gene expression analysis uncovered several genes that were related to cell growth, migration/movement, and death, which could potentially facilitate bronchiolization. In vivo, the formation of BOA lesions was reduced when CC10-human achaete-scute homolog-1 mice were crossed with matrilysin-1 null mice and was correlated with reduced matrilysin-1 expression in BOA. We conclude that matrilysin-1 may play an important role in the bronchiolization of alveoli by promoting proliferation, migration, and attenuation of apoptosis involving multiple genes in the MAP kinase pathway.
Resumo:
Human papillomaviruses (HPV) are double-stranded DNA viruses, which selectively infect keratinocytes in stratified epithelia. After an initial infection, many patients clear HPV. In some patients, however, HPV persist, and dysfunctional innate immune responses to HPV infection could be involved in the ineffective clearing of these viruses. In this study, the mechanisms of HPV-induced immune responses in keratinocytes were investigated. Binding of viral DNA leads to AIM2 inflammasome activation and IL-1β release, while IFI16 activation results in IFN-β release. Using immunohistochemistry, AIM2 and IFI16-two recently identified sensors for cytosolic DNA-were also detected in HPV positive skin lesions. CISH stainings further confirmed the presence of cytosolic HPV16 DNA in biopsy samples. Moreover, active IL-1β and cleaved caspase-1 were detected in HPV infected skin, suggesting inflammasome activation by viral DNA. In subsequent functional studies, HPV16 DNA triggered IL-1β and IL-18 release via the AIM2 inflammasome in normal human keratinocytes. Although HPV DNA did not induce IFN-β in keratinocytes, IFN-β secretion was observed when AIM2 was blocked. Meanwhile, blocking of IFI16 increased HPV16 DNA-induced IL-1β, but not IL-18, secretion. These findings suggest crosstalk between IFI16 and AIM2 in the immune response to HPV DNA. In sum, novel aspects concerning HPV-induced innate immune responses were identified. Eventually, understanding the mechanisms of HPV-induced inflammasome activation could lead to the development of novel strategies for the prevention and treatment of HPV infections.
Resumo:
Antimicrobial peptides (AMPs) are strongly expressed in lesional skin in psoriasis and play an important role as proinflammatory "alarmins" in this chronic skin disease. Vitamin D analogs like calcipotriol have antipsoriatic effects and might mediate this effect by changing AMP expression. In this study, keratinocytes in lesional psoriatic plaques showed decreased expression of the AMPs beta-defensin (HBD) 2 and HBD3 after topical treatment with calcipotriol. At the same time, calcipotriol normalized the proinflammatory cytokine milieu and decreased interleukin (IL)-17A, IL-17F and IL-8 transcript abundance in lesional psoriatic skin. In contrast, cathelicidin antimicrobial peptide expression was increased by calcipotriol while psoriasin expression remained unchanged. In cultured human epidermal keratinocytes the effect of different vitamin D analogs on the expression of AMPs was further analyzed. All vitamin D analogs tested blocked IL-17A induced HBD2 expression by increasing IkappaB-alpha protein and inhibition of NF-kappaB signaling. At the same time vitamin D analogs induced cathelicidin through activation of the vitamin D receptor and MEK/ERK signaling. These studies suggest that vitamin D analogs differentially alter AMP expression in lesional psoriatic skin and cultured keratinocytes. Balancing AMP "alarmin" expression might be a novel goal in treatment of chronic inflammatory skin diseases.
Resumo:
Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.