786 resultados para REAGENT
Resumo:
钻井废水是油气井开采钻探过程中产生的废水,钻井废水成分复杂,有机物浓度高、色度高、悬浮物浓度高,水质变化大,排放点分散,不经处理排放会污染环境,破坏生态。随着石油工业的不断发展和国家环保法律法规的日益严格,钻井废水的治理也越来越受到重视。如何采用经济有效的方法处理废弃钻井液,对油气井开采业的可持续发展具有重要意义。本论文以遂宁磨153 井的钻井废水为主要研究对象,在对废水进行絮凝沉降预处理和生物法处理探索的基础上,针对钻井废水可生化性差的特点,采用水解酸化和Fenton 试剂改善钻井废水的可生化性,对反应过程进行了比较详细的考察,对可生化性改善的机理进行了探索。主要研究结论如下:1 用PFS 和PAC 配制的混合混凝剂对钻井废水COD 的去除效果比较显著,在最佳条件下COD 的去除率可达75%,且絮体沉降速度较快,出水pH 保持中性;2 水解酸化法处理钻井废水可显著改善废水的可生化性。经48 小时水解酸化处理,钻井废水的理论BOD5可提高约22 倍,表观BOD5/COD值由0.004 提高到0.034。用接触氧化反应器处理经水解酸化处理后的废水,处理效果比较稳定,COD平均去除率达35.5%;3 研究了Fenton反应中各影响因子对废水COD去除率、BOD5/COD的影响并分析其作用机制,确定了最佳条件:初始pH为4.0,H2O2/Fe2+(摩尔浓度比)为20,H2O2/COD(质量浓度比)为1,反应时间为2 个小时。此条件下,废水的COD去除率约为40%,BOD5/COD值从0.002~0.003 提高至0.15~0.2,可生化性得到很大提高。本论文的主要创新点在于:1 以成分复杂、水质变化大的气井钻井废水为研究对象,从理论BOD 和表观BOD 两方面对水解酸化过程中废水可生化性的变化进行了分析;2 对Fenton 试剂改善钻井废水可生化性的过程、主要影响因素进行了比较详细的考察。本论文的研究成果,可为生物法处理钻井废水的深入研究提供理论依据。Drilling wastewater is produced in the process of oil-gas well drilling,because of its complicated composition, high concentrate of organic compound andsuspended solid, high chroma, levity of water quality and decentralization ofdischarge point, it pollutes environment seriously if discharged without treatment.With the development of petroleum industry and the issuing of more strict laws forenvironmental protection, it has been paid more and more attention on drillingwastewater treatment. It is of great importance for the sustainable development ofoil-gas well drilling to treat drilling wastewater by economical and effective methods.In this paper, drilling wastewater of Mo No.153 well in Suining was studied asthe main object. On the basis of research on pre-treatment with flocculant andbiological treatment, and according to the character of poor biodegradability, thedrilling wastewater was treated by hydrolytic acidification and Fenton’s reagent toimprove its biodegradability. The process and mechanism of biodegradabilitychanging were investigated. The primary conclusions are:1 It is effective to treat drilling wastewater with mixing PFS and PAC asflocculant. The removal rates of COD came up to 75% under optimal conditions, thesedimentation rate of flocculation is rapid, and the pH value of treated water remainedneutral;2 The biodegradability of drilling wastewater was highly improved afterhydrolytic acidification process. The theoretic BOD5 of drilling wastewater increasedby 22 times and its detected BOD5/COD ratio increased from 0.004 to 0.034 afterhydrolytic acidification for 48 hours. The wastewater after hydrolytic acidificationwas treated by biological contact oxidation reactor. Stable treatment performance was achieved, and the average removal rates of COD came up to 35.5%;3 The effects of various affection factors on the removal efficiency of COD andBOD5/COD radio in treating drilling wastewater by Fenton’s reagent wereinvestigated and the mechanism was analyzed. The optimal conditions were: initialpH of solution was 4.0, the molar ratio of H2O2 and Fe2+ was 20, the concentrationratio of H2O2 and COD was 1 and the reaction time was 120 min. Under the aboveconditions, the removal efficiency was about 40% and the ratio of BOD5 and CODincreased from 0.002 ¡« 0.003 to 0.15 ¡« 0.2. The biodegradability of drillingwastewater was greatly improved.The innovations of this thesis are:1 The drilling wastewater was taken as the research object which hascomplicated composition and variational water quality, and the changes ofbiodegradability were analyzed from theoretic BOD and detected BOD aspects duringhydrolytic acidification process;2 The biodegradability changing process and primary affection factors of drillingwastewater treating by Fenton’s reagent were investigated.The results of this study could provide theoretic foundation for further researchon biological treatment of drilling wastewater.
Resumo:
The aim of this work is to identify if there is sex specificity on C-12(6+) ion-induced oxidative damage in mouse lung at different time points. Kun-Ming mice were divided into two groups, each composed of six males and six females: control group and irradiation group with a single acute dose of 4 Gy. Animals were sacrificed at 2, 4 and 12 h respectively, there lungs were removed immediately, and the oxidative stress-related biomarkers were measured by Diagnostic Reagent Kits. The results showed that the relative activities of superoxide dismutase (4 h), catalase (2 h) and Se-dependent glutathione peroxidase (12 h) have significant changes (P < 0.05) between male groups and female groups, suggesting that the lungs of male mice are more sensitive to counteracting the oxidative challenge. Moreover, higher levels of malondiadehyde and lower contents of glutathione were also found in males, indicating that oxidative stress induced by C-12(6+) ion is pronounced in the lungs of males. We thought that these sex-responded differences may be attributed to the influence of sex hormones.
Resumo:
The radiolysis of cysteine under plasma discharge and irradiation of low-energy Ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR In addition, the generation of hydrogen sulfide was also identified The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH3, -COO-) of cysteine. and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation (C) 2010 Elsevier B V All rights reserved.
Resumo:
A series of commercially useful substituted pyridyl ureas have been synthesized via selenium dioxide-catalyzed reductive carbortylation of substituted nitrobenzene or substituted nitropyridine with amine as co-reagent and carbon monoxide as carbonyl reagent instead of phosgene in one-pot reaction. The recycling reusability of catalyst was also tested. It was also found that selenium dioxide-catalyzed reductive carbonylation of nitroaromatics exhibited reaction-controlled phase-transfer phenomena of the catalyst. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Methacrylate-based monolithic columns with electroosmotic flow (EOF) or very weak EOF are prepared by in situ copolymerization in the presence of a porogen in fused-silica capillaries pretreated with a bifunctional reagent. Satisfactory separations of acidic and basic compounds on the column with EOF at either low or high pH are achieved, respectively. With sulfonic groups as dissociation functionalities, sufficient EOF mobility still remains as high as 1.74 x 10(-4) cm(2) s(-1) V-1 at low pH. Under this condition, seven acidic compounds are readily separated within 5.7 min. Moreover, at high pH, the peak shape of basic compounds is satisfactory without addition of any masking amines into running mobile phase since the secondary interaction between the basic compounds and the monolithic stationary phase are minimized at high pH. Reversed-phase mechanism for both acidic and basic compounds is observed under investigated separation conditions. In addition, possibilities of acidic and basic compound separations on a monolithic column with extremely low EOF are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this review, a few examples of state-to-state dynamics studies of both unimolecular and bimolecular reactions using the H-atom Rydberg tagging TOF technique were presented. From the H2O photodissociation at 157 nm, a direction dissociation example is provided, while photodissociation of H2O at 121.6 has provided an excellent dynamical case of complicated, yet direct dissociation process through conical intersections. The studies of the O(D-1) + H-2 --> OH+H reaction has also been reviewed here. A prototype example of state-to-state dynamics of pure insertion chemical reaction is provided. Effect of the reagent rotational excitation and the isotope effect on the dynamics of this reaction have also been investigated. The detailed mechanism for abstraction channel in this reaction has also been closely studied. The experimental investigations of the simplest chemical reaction, the H-3 system, have also been described here. Through extensive collaborations between theory and experiment, the mechanism for forward scattering product at high collision energies for the H+HD reaction was clarified, which is attributed to a slow down mechanism on the top of a quantized barrier transition state. Oscillations in the product quantum state resolved different cross sections have also been observed in the H+D-2 reaction, and were attributed to the interference of adiabatic transition state pathways from detailed theoretical analysis. The results reviewed here clearly show the significant advances we have made in the studies of the state-to-state molecular reaction dynamics.
Resumo:
A novel approach is proposed for the simultaneous optimization of mobile phase pH and gradient steepness in RP-HPLC using artificial neural networks. By presetting the initial and final concentration of the organic solvent, a limited number of experiments with different gradient time and pH value of mobile phase are arranged in the two-dimensional space of mobile phase parameters. The retention behavior of each solute is modeled using an individual artificial neural network. An "early stopping" strategy is adopted to ensure the predicting capability of neural networks. The trained neural networks can be used to predict the retention time of solutes under arbitrary mobile phase conditions in the optimization region. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for amino acids derivatised by a new fluorescent reagent.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with fluorescence detection has been developed. 9-(2-Hydroxyethyl)acridone reacts with coupling agent N,N-carbonyldiimidazole at ambient temperature to form activated amide intermediate 9-(2-acridone)oxyethylcarbonylimidazole (AOCD). The amide intermediate (AOCD) preferably reacts with amino compounds under mild reactions in the presence of 4-(dimethylamino)pyridine (base catalyst) in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum lambda(ex) 404 mn and an emission maximum at lambda(em) 440 nm. The labeled derivatives exhibit high stability under reversed-phase conditions. The fluorescence intensities of derivatives in various solvents or at different temperatures were investigated. The method, in conjunction with a gradient elution, offers a baseline resolution of the common amine derivatives on a reversed-phase C-18 column. The LC separation for the derivatized amines shows good reproducibility with acetonitrile-water including 2.5% DMF as mobile phase. The relative standard deviations (n = 6) for each amine derivative are <4.5%. The detection limits (at a signal-to-noise ratio of 3) per injection were 0.16-12.8 ng/mL. Further research for the field of application, based on the AOCD amide intermediate as derivatization reagent, for the determination of free amines in real water samples is achieved.
Resumo:
Positively charged chiral stationary phases (CSPs) were prepared for capillary electrochromatography (CEC) separation of enantiomers by chemically immobilizing cellulose derivatives onto diethylenetriaminopropylated silica (DEAPS) with tolylene-2,4-diisocyanate (TDI) as a spacer reagent. Anodic electroosmotic mobility was observed in both nonaqueous and aqueous mobile phases due to the positively charged amines on the surface of the prepared CSPs. For comparison, the traditionally used 3-aminopropyl silica (APS) was also adopted as the base material instead of DEAPS to prepare CSP. It was observed that the EOF on the DEAPS-based CSP was 18%-60% higher than that on the APS-based CSP under nonaqueous mobile phase conditions. Separation of enantiomers in CEC was performed on the positively charged CSPs with the nonaqueous mobile phases of pure ethanol or mixture of hexane-alcohol and the aqueous phases of acetonitrile-water or 95% ethanol. Fast separation of enantiomers was achieved on the newly prepared CSPs.
Resumo:
2-(9-Carbazole)-ethyl-chloroformate (CEOC), a novel pre-column fluorescence derivatization reagent, has been developed for the analysis of aromatic amines. Taking five monocyclic aromatic amines (o-toluidine, aniline, 3,4-dimethylaniline, N-ethyl-p-toluidine, and p-phenylenediamine) as testing compounds, derivatization conditions such as pH of borate buffer, reaction time and fluorescent tagging reagent concentration have been investigated. By a one-step procedure, CEOC reacts readily with the aromatic amines to form stable derivatives with excitation and emission wavelengths, respectively, at 293 and 360 nm. This derivatization reaction could be finished within 20 min even at room temperature. The peak shapes of the derivatized aromatic amines can be improved greatly without any addition of competition amines into the mobile phase. Furthermore, this method can offer excellent quantitative precision with high tolerance of the matrix of samples. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A facile and efficient synthesis of substituted alpha-alkylidene-beta-lactams have been developed via a NaOH-promoted intramolecular aza-Michael addition of alpha-carbamoyl, alpha-(1-chlorovinyl) ketene-S,S-acetals and subsequent nucleophilic vinylic substitution (SNV) reaction in alcoholic aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We described the use of silica nanoparticles as building blocks for the immobilization of electrogenerated chemiluminescence (ECL) reagent Ru(bpy)3" and the fabrication of layer-by-layer assembly film by alternating the deposition of the Ru(bpy)3 2'-doped silica nanoparticles and Au nanoparticles.
Resumo:
Electrochemiluminescence (ECL) of tris(2,2'-bipyridyl) ruthenium [Ru(bpy)(3)(2+)] has received considerable attention. By immobilizing Ru(bpy)(3)(2+) on an e electrode surface, solid-state ECL provides several advantages over solution-phase ECL, such as reducing consumption of expensive reagent, simplifying experimental design and enhancing the ECL signal.This review presents the state of the art in solid-state ECL of Ru(bpy)(3)(2+).
Resumo:
In this work, an electrochemiluminescence (ECL) reagent bis(2,2'-bipyridine)(5,6-epoxy-5,6-dihydro-[1,10]phenanthroline)ruthenium complex (Ru-1) was synthesized, and its electrochemical and ECL properties were characterized. The synthesis of Ru-1 was confirmed by IR spectra, element analysis, and H-1 NMR spectra. For further study, its UV-vis absorption and fluorescence emission spectra were investigated. Ru-1 also exhibited quasi-reversible Ru-II/Ru-III redox waves in acetonitrile solution. The aqueous ECL behaviors of Ru-1 were also studied in the absence and in the presence of tripropylamine.
Resumo:
An industrial waterproof reagent [(potassium methyl siliconate) (PMS)] was used for fabricating a superhydrophobic surface on a cellulose-based material (cotton fabric or paper) through a solution-immersion method. This method involves a hydrogen bond assembly and a polycondensation process. The silanol, which was formed by a reaction of PMS aqueous solution with CO2, Was assembled on the cellulose molecule surface via hydrogen bond interactions. The polymethylsilsesquioxane coatings were prepared by a polycondensation reaction of the hydroxyl between cellulose and silatiol. The superhydrophobic cellulose materials were characterized by FTIR spectroscopy, thermogravimetry, and surface analysis (XPS, FESEM, AFM, and contact angle measurements).