959 resultados para Prediction systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulations based on plans for a deep geothermal system in Basel, Switzerland are used here to understand chemical processes that occur in an initially dry granitoid reservoir during hydraulic stimulation and long-term water circulation to extract heat. An important question regarding the sustainability of such enhanced geothermal systems (EGS), is whether water–rock reactions will eventually lead to clogging of flow paths in the reservoir and thereby reduce or even completely block fluid throughput. A reactive transport model allows the main chemical reactions to be predicted and the resulting evolution of porosity to be tracked over the expected 30-year operational lifetime of the system. The simulations show that injection of surface water to stimulate fracture permeability in the monzogranite reservoir at 190 °C and 5000 m depth induces redox reactions between the oxidised surface water and the reduced wall rock. Although new calcite, chlorite, hematite and other minerals precipitate near the injection well, their volumes are low and more than compensated by those of the dissolving wall-rock minerals. Thus, during stimulation, reduction of injectivity by mineral precipitation is unlikely. During the simulated long-term operation of the system, the main mineral reactions are the hydration and albitization of plagioclase, the alteration of hornblende to an assemblage of smectites and chlorites and of primary K-feldspar to muscovite and microcline. Within a closed-system doublet, the composition of the circulated fluid changes only slightly during its repeated passage through the reservoir, as the wall rock essentially undergoes isochemical recrystallization. Even after 30 years of circulation, the calculations show that porosity is reduced by only ∼0.2%, well below the expected fracture porosity induced by stimulation. This result suggests that permeability reduction owing to water–rock interaction is unlikely to jeopardize the long-term operation of deep, granitoid-hosted EGS systems. A peculiarity at Basel is the presence of anhydrite as fracture coatings at ∼5000 m depth. Simulated exposure of the circulating fluid to anhydrite induces a stronger redox disequilibrium in the reservoir, driving dissolution of ferrous minerals and precipitation of ferric smectites, hematite and pyrite. However, even in this scenario the porosity reduction is at most 0.5%, a value which is unproblematic for sustainable fluid circulation through the reservoir.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cranio-maxillofacial surgery, the determination of a proper surgical plan is an important step to attain a desired aesthetic facial profile and a complete denture closure. In the present paper, we propose an efficient modeling approach to predict the surgical planning on the basis of the desired facial appearance and optimal occlusion. To evaluate the proposed planning approach, the predicted osteotomy plan of six clinical cases that underwent CMF surgery were compared to the real clinical plan. Thereafter, simulated soft-tissue outcomes were compared using the predicted and real clinical plan. This preliminary retrospective comparison of both osteotomy planning and facial outlook shows a good agreement and thereby demonstrates the potential application of the proposed approach in cranio-maxillofacial surgical planning prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Location prediction has attracted a significant amount of research effort. Being able to predict users’ movement benefits a wide range of communication systems, including location-based service/applications, mobile access control, mobile QoS provision, and resource management for mobile computation and storage management. In this demo, we present MOBaaS, which is a cloudified Mobility and Bandwidth prediction services that can be instantiated, deployed, and disposed on-demand. Mobility prediction of MOBaaS provides location predictions of a single/group user equipments (UEs) in a future moment. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operations. We demonstrate an example of real-time mobility prediction service deployment running on OpenStack platform, and the potential benefits it bring to other invoking services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlatitudes. Systematic comparisons between observations, the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses including the recent Integrated Forecast System cycles 38r1 and 38r2, the NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses, and the free-running climate Max Planck Institute–Earth System Model–Low Resolution (MPI-ESM-LR) are carried out in both temporal and spectral dom ains. We find that ECMWF and MERRA are broadly consistent with lidar and wind radiometer measurements up to ~40 km. For both temperature and horizontal wind components, deviations increase with altitude as the assimilated observations become sparser. Between 40 and 60 km altitude, the standard deviation of the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind. The largest deviations are observed in winter when the variability from large-scale planetary waves dominates. Between lidar data and MPI-ESM-LR, there is an overall agreement in spectral amplitude down to 15–20 days. At shorter time scales, the variability is lacking in the model by ~10 dB. Infrasound observations indicate a general good agreement with ECWMF wind and temperature products. As such, this study demonstrates the potential of the infrastructure of the Atmospheric Dynamics Research Infrastructure in Europe project that integrates various measurements and provides a quantitative understanding of stratosphere-troposphere dynamical coupling for numerical weather prediction applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a theory of trade policy determination that incorporates the protectionist bias inherent in majoritarian systems, suggested by Grossman and Helpman (2005). The prediction that emerges is that in majoritarian systems, the majority party favors industries located disproportionately in majority districts. We test this prediction using U.S. tariff data from 1993, and House campaign contribution data from two electoral cycles. We find evidence of a protectionist bias due to majoritarian system politics that is comparable in magnitude to the payoff from being an organized industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The National Health Planning and Resources Development Act of 1974 (Public Law 93-641) requires that health systems agencies (HSAs) plan for their health service areas by the use of existing data to the maximum extent practicable. Health planning is based on the identificaton of health needs; however, HSAs are, at present, identifying health needs in their service areas in some approximate terms. This lack of specificity has greatly reduced the effectiveness of health planning. The intent of this study is, therefore, to explore the feasibility of predicting community levels of hospitalized morbidity by diagnosis by the use of existing data so as to allow health planners to plan for the services associated with specific diagnoses.^ The specific objectives of this study are (a) to obtain by means of multiple regression analysis a prediction equation for hospital admission by diagnosis, i.e., select the variables that are related to demand for hospital admissions; (b) to examine how pertinent the variables selected are; and (c) to see if each equation obtained predicts well for health service areas.^ The existing data on hospital admissions by diagnosis are those collected from the National Hospital Discharge Surveys, and are available in a form aggregated to the nine census divisions. When the equations established with such data are applied to local health service areas for prediction, the application is subject to the criticism of the theory of ecological fallacy. Since HSAs have to rely on the availability of existing data, it is imperative to examine whether or not the theory of ecological fallacy holds true in this case.^ The results of the study show that the equations established are highly significant and the independent variables in the equations explain the variation in the demand for hospital admission well. The predictability of these equations is good when they are applied to areas at the same ecological level but become poor, predominantly due to ecological fallacy, when they are applied to health service areas.^ It is concluded that HSAs can not predict hospital admissions by diagnosis without primary data collection as discouraged by Public Law 93-641. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms that allow pathogens to colonize the host are not the product of isolated genes, but instead emerge from the concerted operation of regulatory networks. Therefore, identifying components and the systemic behavior of networks is necessary to a better understanding of gene regulation and pathogenesis. To this end, I have developed systems biology approaches to study transcriptional and post-transcriptional gene regulation in bacteria, with an emphasis in the human pathogen Mycobacterium tuberculosis (Mtb). First, I developed a network response method to identify parts of the Mtb global transcriptional regulatory network utilized by the pathogen to counteract phagosomal stresses and survive within resting macrophages. As a result, the method unveiled transcriptional regulators and associated regulons utilized by Mtb to establish a successful infection of macrophages throughout the first 14 days of infection. Additionally, this network-based analysis identified the production of Fe-S proteins coupled to lipid metabolism through the alkane hydroxylase complex as a possible strategy employed by Mtb to survive in the host. Second, I developed a network inference method to infer the small non-coding RNA (sRNA) regulatory network in Mtb. The method identifies sRNA-mRNA interactions by integrating a priori knowledge of possible binding sites with structure-driven identification of binding sites. The reconstructed network was useful to predict functional roles for the multitude of sRNAs recently discovered in the pathogen, being that several sRNAs were postulated to be involved in virulence-related processes. Finally, I applied a combined experimental and computational approach to study post-transcriptional repression mediated by small non-coding RNAs in bacteria. Specifically, a probabilistic ranking methodology termed rank-conciliation was developed to infer sRNA-mRNA interactions based on multiple types of data. The method was shown to improve target prediction in Escherichia coli, and therefore is useful to prioritize candidate targets for experimental validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complexity has always been one of the most important issues in distributed computing. From the first clusters to grid and now cloud computing, dealing correctly and efficiently with system complexity is the key to taking technology a step further. In this sense, global behavior modeling is an innovative methodology aimed at understanding the grid behavior. The main objective of this methodology is to synthesize the grid's vast, heterogeneous nature into a simple but powerful behavior model, represented in the form of a single, abstract entity, with a global state. Global behavior modeling has proved to be very useful in effectively managing grid complexity but, in many cases, deeper knowledge is needed. It generates a descriptive model that could be greatly improved if extended not only to explain behavior, but also to predict it. In this paper we present a prediction methodology whose objective is to define the techniques needed to create global behavior prediction models for grid systems. This global behavior prediction can benefit grid management, specially in areas such as fault tolerance or job scheduling. The paper presents experimental results obtained in real scenarios in order to validate this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the use of recommender systems becomes more consolidated on the Net, an increasing need arises to develop some kind of evaluation framework for collaborative filtering measures and methods which is capable of not only testing the prediction and recommendation results, but also of other purposes which until now were considered secondary, such as novelty in the recommendations and the users? trust in these. This paper provides: (a) measures to evaluate the novelty of the users? recommendations and trust in their neighborhoods, (b) equations that formalize and unify the collaborative filtering process and its evaluation, (c) a framework based on the above-mentioned elements that enables the evaluation of the quality results of any collaborative filtering applied to the desired recommender systems, using four graphs: quality of the predictions, the recommendations, the novelty and the trust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detecting user affect automatically during real-time conversation is the main challenge towards our greater aim of infusing social intelligence into a natural-language mixed-initiative High-Fidelity (Hi-Fi) audio control spoken dialog agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. This paper attempts to address part of this challenge by considering the role of user satisfaction ratings and also conversational/dialog features in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. However, given the laboratory constraints, users might be positively biased when rating the system, indirectly making the reliability of the satisfaction data questionable. Machine learning experiments were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. Our results indicated that standard classifiers were significantly more successful in discriminating the abovementioned emotions and their intensities (reflected by user satisfaction ratings) from annotator data than from user data. These results corroborated that: first, satisfaction data could be used directly as an alternative target variable to model affect, and that they could be predicted exclusively by dialog features. Second, these were only true when trying to predict the abovementioned emotions using annotator?s data, suggesting that user bias does exist in a laboratory-led evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current trends in the fields of artifical intelligence and expert systems are moving towards the exciting possibility of reproducing and simulating human expertise and expert behaviour into a knowledge base, coupled with an appropriate, partially ‘intelligent’, computer code. This paper deals with the quality level prediction in concrete structures using the helpful assistance of an expert system, QL-CONST1, which is able to reason about this specific field of structural engineering. Evidence, hypotheses and factors related to this human knowledge field have been codified into a knowledge base. This knowledge base has been prepared in terms of probabilities of the presence of either hypotheses or evidence and the conditional presence of both. Human experts in the fields of structural engineering and the safety of structures gave their invaluable knowledge and assistance to the construction of the knowledge base. Some illustrative examples for, the validation of the expert system behaviour are included.