573 resultados para Predictability
Resumo:
Purpose - The purpose of this paper is to develop a framework of total acquisition cost of overseas outsourcing/sourcing in manufacturing industry. This framework contains categorized cost items that may occur during the overseas outsourcing/sourcing process. The framework was tested by a case study to establish both its feasibility and usability. Design/methodology/approach - First, interviews were carried out with practitioners who have the experience of overseas outsourcing/sourcing in order to obtain inputs from industry. The framework was then built up based on combined inputs from literature and from practitioners. Finally, the framework was tested by a case study in a multinational high-tech manufacturer to establish both its feasibility and usability. Findings - A practical barrier for implementing this framework is shortage of information. The predictability of the cost items in the framework varies. How to deal with the trade off between accuracy and applicability is a problem needed to be solved in the future research. Originality/value - There are always limitations to the generalizations that can be made from just one case. However, despite these limitations, this case study is believed to have shown the general requirement of modeling the uncertainty and dealing with the dilemma between accuracy and applicability in practice. © Emerald Group Publishing Limited.
Resumo:
Looking for a target in a visual scene becomes more difficult as the number of stimuli increases. In a signal detection theory view, this is due to the cumulative effect of noise in the encoding of the distractors, and potentially on top of that, to an increase of the noise (i.e., a decrease of precision) per stimulus with set size, reflecting divided attention. It has long been argued that human visual search behavior can be accounted for by the first factor alone. While such an account seems to be adequate for search tasks in which all distractors have the same, known feature value (i.e., are maximally predictable), we recently found a clear effect of set size on encoding precision when distractors are drawn from a uniform distribution (i.e., when they are maximally unpredictable). Here we interpolate between these two extreme cases to examine which of both conclusions holds more generally as distractor statistics are varied. In one experiment, we vary the level of distractor heterogeneity; in another we dissociate distractor homogeneity from predictability. In all conditions in both experiments, we found a strong decrease of precision with increasing set size, suggesting that precision being independent of set size is the exception rather than the rule.
Resumo:
A global wavenumber-3 dipole SST mode is showed to exist in the Southern Hemisphere subtropical climate variability in austral summer. A positive (negative) phase of the mode is characterized by cool (warm) SST anomalies in the east and warm (cool) SST anomalies in the southwest of the south Indian, Pacific, and Atlantic Oceans, respectively. This coherent dipole structure is largely a response of ocean mixed layer to the atmospheric forcing characterized by migration and modulation of the subtropical high-pressures, in which the latent heat flux play a leading role through wind-induced evaporation, although ocean dynamics may also be crucial in forming SST anomalies attached to the continents. Exploratory analyses suggest that this mode is strongly damped by the negative heat flux feedback, with a persistence time about three months and no spectral peak at interannual to decadal time scales. As the subtropical dipole mode is linearly independent of ENSO and SAM, whether it represents an additional source of climate predictability should be further studied. Citation: Wang, F. (2010), Subtropical dipole mode in the Southern Hemisphere: A global view, Geophys. Res. Lett., 37, L10702, doi: 10.1029/2010GL042750.
Resumo:
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.
Resumo:
热带海洋是大尺度海气相互作用的关键区域,对全球气候变化有重要影响。厄尔尼诺与南方涛动(ENSO)及热带大西洋变率(TAV)是分别是热带太平洋、大西洋的最显著气候变率。对热带海洋海表温度(SST)的预报是预报ENSO和TAV的关键要素,对全球气候、生态环境及许多国家的防灾减灾、经济发展有非常重要的意义。 本文利用一个中等复杂程度的海-气耦合模式CCM3-RGO,对1980-2000年热带海洋SST变率进行回顾性预报。并创新性地在耦合模式中加入大气噪声过滤器,检验天气噪声等因素对预报的影响。 第一部分工作为ENSO预报。本文改进了初始化方案,并应用噪声过滤器减少天气噪声对耦合过程的影响,显著提高了ENSO预报技能,达到同类研究的先进水平。进一步分析表明,采用耦合同化方法产生的、与模式相容性和准确性皆优的初始条件,对2个季节以内的ENSO预报技巧的提高起主要作用;在适宜的初始条件下,过滤风应力中的天气噪声,可以增强海-气耦合过程的信噪比,改善模式对风-温跃层-SST相互作用的Bjerknes反馈机制的正确响应,对3-4季节预报技巧的改进起主要作用。 第二部分为热带大西洋SST预报。发现过滤热通量中的天气噪声可以加强局地热力学反馈,对以往预报水平较低的南热带大西洋SST预报有显著的改进作用。
Resumo:
In the period of college, an individual matures rapidly in all aspects. College engineering students are the important parts of undergraduates. The state of an individual’s mental health may affect and even decide his future life and work. The level of the student’s self-concept and the kind of coping styles the students adopt are directly related to their mental health. So, it is significant to study the psychological stress, coping and self-concept of college engineering students for the mental health education and research of college engineering students. Based on overviews of former research, with the China College Student Psychological Stress Scale, the Coping Styles Scale and the Tennessee Self-Concept Scale, 559 college engineering students were investigated to explore the characteristics of and the relationship between the psychological stress, coping styles and self-concept of college engineering students. The results showed: 1. The stresses of learning, living and daily hassles were the main psychological stresses of college engineering students. There were significant differences in psychological stress between students from the countryside and those from urban areas, between needy students and non-needy students, between single-parent students and non-single-parent students, among students from different grades, with different academic achievements and of different postgraduate targets, between student party members and non-party members, between student cadres and non-cadres. However, there were no significant differences between male and female, between those from single-child families and from multiple-child families. 2. The coping styles of solving problem, seeking help and rationalization were the main coping styles of college engineering students. There were significant differences in the coping styles between needy students and non-needy students, among students from different grades, with different academic achievements and of different postgraduate targets, between student party members and non-party members, between student cadres and non-cadres. However, there were no significant differences between students from the countryside and from urban areas, between male and female, between single-parent students and non-single-parent students, between those from single-child families and from multiple-child families. 3. The self-concept of college engineering students was positive in general. There were significant differences in self-concept between students from the countryside and those from urban areas, between male and female, between needy students and non-needy students, between single-parent students and non-single-parent students, among students from different grades, with different academic achievements and of different postgraduate targets, between student party members and non-party members, between student cadres and non-cadres. However, there were no significant differences between those from single-child families and from multiple-child families. 4. The psychological stress had significantly negative correlation to the immature coping styles, and had partial correlation to the mature coping styles. Coping style has significant predictability on psychological stress. 5. The positive factors of the self-concept had significantly negative correlation to psychological stress, but self-criticism had positive correlation to psychological stress. There are significant differences between high self-concept students and low self-concept students for psychological stress. Self-concept has significant predictability on psychological stress. 6. The positive factors of the self-concept had significantly negative correlation to the coping styles of self-blame, illusion, avoidance, and rationalization, but had significantly positive correlation to the coping style of solving problem and seeking help. Self-criticism had significantly negative correlation to the coping styles of self-blame, illusion, avoidance, and rationalization. There are significant differences between high self-concept students and low self-concept students for coping styles. Self-concept has significant predictability on coping styles. 7. The self-concept of college engineering students had an effect on psychological stress by coping styles. However, the effect by the immature coping styles was higher than that to the mental health directly, and the effect by the mature and mixed coping styles was slighter than that to the mental health directly. According to the results, improving the college engineering students’ self-concept level and establishing right self-concept, developing the middle school student’ active coping styles and overcoming the negative coping styles are essential and important to the college engineering students’ mental health and provide useful clues for the psychological education of the college engineering students.
Resumo:
The role of renewable energy in power systems is becoming more significant due to the increasing cost of fossil fuels and climate change concerns. However, the inclusion of Renewable Energy Generators (REG), such as wind power, has created additional problems for power system operators due to the variability and lower predictability of output of most REGs, with the Economic Dispatch (ED) problem being particularly difficult to resolve. In previous papers we had reported on the inclusion of wind power in the ED calculations. The simulation had been performed using a system model with wind power as an intermittent source, and the results of the simulation have been compared to that of the Direct Search Method (DSM) for similar cases. In this paper we report on our continuing investigations into using Genetic Algorithms (GA) for ED for an independent power system with a significant amount of wind energy in its generator portfolio. The results demonstrate, in line with previous reports in the literature, the effectiveness of GA when measured against a benchmark technique such as DSM.
Resumo:
This study investigated the consistency of a measure of integrative motivation in the prediction of achievement in English as a foreign language in 18 samples of Polish school students. The results are shown to have implications for concerns expressed that integrative motivation might not be appropriate to the acquisition of English because it is a global language and moreover that other factors such as the gender of the student or the environment of the class might also influence its predictability. Results of a hierarchical linear modeling analysis indicated that for the older samples, integrative motivation was a consistent predictor of grades in English, unaffected by either the gender of the student or class environment acting as covariates. Comparable results were obtained for the younger samples except that student gender also contributed to the prediction of grades in English. Examination of the correlations of the elements of the integrative motivation score with English grades demonstrated that the aggregate score is the more consistent correlate from sample to sample than the elements themselves. Such results lead to the hypothesis that integrative motivation is a multi-dimensional construct and different aspects of the motivational complex come into play for each individual. That is, two individuals can hold the same level of integrative motivation and thus attain the same level of achievement but one might be higher in some elements and lower in others than another individual, resulting in consistent correlations of the aggregate but less so for the elements.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Predictability - the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements - is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is the Time-constrained Reactive Automaton (TRA) formalism, which adopts a fundamental notion of space and time that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Using the TRA model, unrealistic systems - possessing properties such as clairvoyance, caprice, in finite capacity, or perfect timing - cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems - not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed. The TRA model is presented to system developers through the CLEOPATRA programming language. CLEOPATRA features a C-like imperative syntax for the description of computation, which makes it easier to incorporate in applications already using C. It is event-driven, and thus appropriate for embedded process control applications. It is object-oriented and compositional, thus advocating modularity and reusability. CLEOPATRA is semantically sound; its objects can be transformed, mechanically and unambiguously, into formal TRA automata for verification purposes, which can be pursued using model-checking or theorem proving techniques. Since 1989, an ancestor of CLEOPATRA has been in use as a specification and simulation language for embedded time-critical robotic processes.
Resumo:
Predictability — the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements - is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is a formalism that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Unrealistic systems — possessing properties such as clairvoyance, caprice, infinite capacity, or perfect timing — cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems - not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed.
Resumo:
Predictability -- the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements -- is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is the Time-constrained Reactive Automaton (TRA) formalism, which adopts a fundamental notion of space and time that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Using the TRA model, unrealistic systems – possessing properties such as clairvoyance, caprice, infinite capacity, or perfect timing -- cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems -- not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed. The TRA model is presented to system developers through the Cleopatra programming language. Cleopatra features a C-like imperative syntax for the description of computation, which makes it easier to incorporate in applications already using C. It is event-driven, and thus appropriate for embedded process control applications. It is object-oriented and compositional, thus advocating modularity and reusability. Cleopatra is semantically sound; its objects can be transformed, mechanically and unambiguously, into formal TRA automata for verification purposes, which can be pursued using model-checking or theorem proving techniques. Since 1989, an ancestor of Cleopatra has been in use as a specification and simulation language for embedded time-critical robotic processes.
Resumo:
The congestion control mechanisms of TCP make it vulnerable in an environment where flows with different congestion-sensitivity compete for scarce resources. With the increasing amount of unresponsive UDP traffic in today's Internet, new mechanisms are needed to enforce fairness in the core of the network. We propose a scalable Diffserv-like architecture, where flows with different characteristics are classified into separate service queues at the routers. Such class-based isolation provides protection so that flows with different characteristics do not negatively impact one another. In this study, we examine different aspects of UDP and TCP interaction and possible gains from segregating UDP and TCP into different classes. We also investigate the utility of further segregating TCP flows into two classes, which are class of short and class of long flows. Results are obtained analytically for both Tail-drop and Random Early Drop (RED) routers. Class-based isolation have the following salient features: (1) better fairness, (2) improved predictability for all kinds of flows, (3) lower transmission delay for delay-sensitive flows, and (4) better control over Quality of Service (QoS) of a particular traffic type.
Resumo:
The majority of the traffic (bytes) flowing over the Internet today have been attributed to the Transmission Control Protocol (TCP). This strong presence of TCP has recently spurred further investigations into its congestion avoidance mechanism and its effect on the performance of short and long data transfers. At the same time, the rising interest in enhancing Internet services while keeping the implementation cost low has led to several service-differentiation proposals. In such service-differentiation architectures, much of the complexity is placed only in access routers, which classify and mark packets from different flows. Core routers can then allocate enough resources to each class of packets so as to satisfy delivery requirements, such as predictable (consistent) and fair service. In this paper, we investigate the interaction among short and long TCP flows, and how TCP service can be improved by employing a low-cost service-differentiation scheme. Through control-theoretic arguments and extensive simulations, we show the utility of isolating TCP flows into two classes based on their lifetime/size, namely one class of short flows and another of long flows. With such class-based isolation, short and long TCP flows have separate service queues at routers. This protects each class of flows from the other as they possess different characteristics, such as burstiness of arrivals/departures and congestion/sending window dynamics. We show the benefits of isolation, in terms of better predictability and fairness, over traditional shared queueing systems with both tail-drop and Random-Early-Drop (RED) packet dropping policies. The proposed class-based isolation of TCP flows has several advantages: (1) the implementation cost is low since it only requires core routers to maintain per-class (rather than per-flow) state; (2) it promises to be an effective traffic engineering tool for improved predictability and fairness for both short and long TCP flows; and (3) stringent delay requirements of short interactive transfers can be met by increasing the amount of resources allocated to the class of short flows.
Resumo:
This thesis is focused on the design and synthesis of a diverse range of novel organosulfur compounds (sulfides, sulfoxides and sulfones), with the objective of studying their solid state properties and thereby developing an understanding of how the molecular structure of the compounds impacts upon their solid state crystalline structure. In particular, robust intermolecular interactions which determine the overall structure were investigated. These synthons were then exploited in the development of a molecular switch. Chapter One provides a brief overview of crystal engineering, the key hydrogen bonding interactions utilized in this work and also a general insight into “molecular machines” reported in the literature of relevance to this work. Chapter Two outlines the design and synthetic strategies for the development of two scaffolds suitable for incorporation of terminal alkynes, organosulfur and ether functionalities, in order to investigate the robustness and predictability of the S=O•••H-C≡C- and S=O•••H-C(α) supramolecular synthons. Crystal structures and a detailed analysis of the hydrogen bond interactions observed in these compounds are included in this chapter. Also the biological activities of four novel tertiary amines are discussed. Chapter Three focuses on the design and synthesis of diphenylacetylene compounds bearing amide and sulfur functionalities, and the exploitation of the N-H•••O=S interactions to develop a “molecular switch”. The crystal structures, hydrogen bonding patterns observed, NMR variable temperature studies and computer modelling studies are discussed in detail. Chapter Four provides the overall conclusions from chapter two and chapter three and also gives an indication of how the results of this work may be developed in the future. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of the NCI (National Cancer Institute) biological test results are included in the appendix.