912 resultados para Power systems optimization
Resumo:
The use of renewables have been increased I several countries around the world, namely in Europe. The wind power is generally the larger renewable resource with very specific characteristics in what concerns its variability and the inherent impacts in the power systems and electricity markets operation. This paper focuses on the Portuguese context of renewables use, including wind power. The work here presented includes the use of a real time pricing methodology developed by the authors aiming the reduction of electricity consumption in the moments of unexpected low wind power. A more specific example of application of real time pricing is demonstrated for the minimization of the operation costs in a distribution network. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs.
Resumo:
Demand response concept has been gaining increasing importance while the success of several recent implementations makes this resource benefits unquestionable. This happens in a power systems operation environment that also considers an intensive use of distributed generation. However, more adequate approaches and models are needed in order to address the small size consumers and producers aggregation, while taking into account these resources goals. The present paper focuses on the demand response programs and distributed generation resources management by a Virtual Power Player that optimally aims to minimize its operation costs taking the consumption shifting constraints into account. The impact of the consumption shifting in the distributed generation resources schedule is also considered. The methodology is applied to three scenarios based on 218 consumers and 4 types of distributed generation, in a time frame of 96 periods.
Resumo:
Recent changes of paradigm in power systems opened the opportunity to the active participation of new players. The small and medium players gain new opportunities while participating in demand response programs. This paper explores the optimal resources scheduling in two distinct levels. First, the network operator facing large wind power variations makes use of real time pricing to induce consumers to meet wind power variations. Then, at the consumer level, each load is managed according to the consumer preferences. The two-level resources schedule has been implemented in a real-time simulation platform, which uses hardware for consumer’ loads control. The illustrative example includes a situation of large lack of wind power and focuses on a consumer with 18 loads.
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
The electricity market restructuring, and its worldwide evolution into regional and even continental scales, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in a rising complexity in power systems operation. Several power system simulators have been developed in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex and constantly changing environment. The main contribution of this paper is given by the integration of several electricity market and power system models, respecting to the reality of different countries. This integration is done through the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The continuous development of Multi-Agent System for Competitive Electricity Markets platform provides the means for the exemplification of the usefulness of this ontology. A case study using the proposed multi-agent platform is presented, considering a scenario based on real data that simulates the European Electricity Market environment, and comparing its performance using different market mechanisms. The main goal is to demonstrate the advantages that the integration of various market models and simulation platforms have for the study of the electricity markets’ evolution.
Resumo:
Building sector has become an important target for carbon emissions reduction, energy consumption and resources depletion. Due to low rates of replacement of the existing buildings, their low energy performances are a major concern. Most of the current regulations are focused on new buildings and do not account with the several technical, functional and economic constraints that have to be faced in the renovation of existing buildings. Thus, a new methodology is proposed to be used in the decision making process for energy related building renovation, allowing finding a cost-effective balance between energy consumption, carbon emissions and overall added value.
Resumo:
The subject of this master’s thesis is to research grounding in a particular wind power application. The aim is to define how the grounding from different points effects to the function of the whole system. The investigated subjects are generator voltage spikes, ground currents and system fault situations. The first part of this thesis represents power electronics, which is commonly used in wind power systems. The second part concentrates more to the grounding, electrical safety demands and potential fault situations. The object of the simulations is to investigate voltage spikes and fault situations. Measurements will be made with small-scale setup and in the last part simulation and measurement results are compared to each other and to a full-scale system.
Resumo:
All over the world power systems become bigger and bigger every day. New equipment is installed, new feeders are constructed, new power units are installed. Some old elements of the network, however, are not changed in time. As a result, “bottlenecks” for capacity transmission can occur. By locked power problem the situation when a power plant has installed capacity exceeding the power it can actually deliver is usually meant. Regime, scheme or even technical restrictions-related issues usually cause this kind of problem. It is really important, since from the regime point of view it is typical decision to have a mobile capacity reserve, in case of malfunctions. And, what can be even more significant, power plant owner (JSC Fortum in our case) losses his money because of selling less electrical energy. The goal of master`s thesis is to analyze the current state of Chelyabinsk power system and the CHP-3 (Combined Heat and Power plant) in particular in relation with it`s ability to deliver the whole capacity of the CHP in it`s existing state and also taking into consideration the prospect of power unit 3 installation by the fourth quarter of 2010. The thesis contains some general information about the UPS of Russia, CPS of Ural, power system of Chelyabinsk and the Chelyabinsk region itself. Then the CHP-3 is described from technical point of view with it`s equipment observation. Regimes for the nowadays power system and for the system after the power unit 3 installation are reviewed. The problems occurring are described and, finally, a solution is offered.
Resumo:
Energiatehokkuus on nykyaikana yksi tärkeimmistä energiataloudellisista tekijöistä voimalaitosten sähköntuotannossa. Varsinkin yhteistuotantolaitoksissa joissa sähkö on lämpöenergian lisänä saatava sivutuote, sähkön tuotannon optimointi voi merkitä laitostalouden ja yrityksen kannalta huomattavia lisätuloja tai -säästöjä. Kaukaan Voima Oy:n biovoimalaitos on vuonna 2009 kaupalliseen käyttöön valmistunut moderni yhteistuotantolaitos, joka sijaitsee Lappeenrannassa UPM Kaukas sellutehtaan tehdasalueella. Voimalaitos tuottaa kaukolämpöä ja sähköä Lappeenrannan kaupungille sekä prosessihöyryä ja sähköä UPM Kaukaan tehtaille. Tämän työn tavoitteena on tarkastella biovoimalaitoksen omakäyttösähkön kulutusta kuukausitasolla verrattuna laitoksella tuotettavan höyryn määrään sekä etsiä voimalaitokselta kohteita, joiden omakäyttösähkön kulutusta voidaan vähentää vaikuttamatta höyryntuotantoon ja näin parantaa laitoksen energiatehokkuutta ja hyötysuhdetta. Työ rajataan käsittelemään voimalaitoksen apulaitteiden ja -järjestelmien omakäyttösähkön kulutusta. Työssä tarkastellaan vuodenaikojen vaihtelun ja kaukolämmön sekä prosessihöyryn tarpeen muutoksen vaikutusta voimalaitoksen ajomalliin sekä höyryntuotannon ja omakäyttösähkön kulutuksen suhteisiin. Työssä esiin nousseiden kohteiden potentiaaliset sähköenergian säästöt ovat noin 2500 MWh vuodessa joka tarkoittaa keskimäärin 3,7 % vähennystä voimalaitoksen kuukausittaiseen omakäyttösähkön kulutukseen. Kohteet eivät käytännössä vaadi minkaanlaista investointirahaa, vaan uusia ajojärjestelyitä. Keskeisimmiksi säästökohteiksi valikoitui laitoksen pumppausjärjestelmien paineenalennukset.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
Työn tavoitteena on kehittää ABB:lle palvelutuote, jota voidaan tarjota voimalaitosasiakkaille. Uuden palvelutuotteen tulee vastata ABB:n uuden strategian linjauksiin. Palvelulla tarjotaan asiakkaille 1.1.2015 voimaan tulleen energiatehokkuuslain määrittelemien pakollisten toimenpiteiden suoritusta. Työssä kerätään, käsitellään ja analysoidaan tietoa voimalaitosasiakkaille suunnatun palvelun tuotteistamisprosessin päätöksenteon tueksi. Palvelutuotteen kehittämistä varten tutkitaan ABB:n nykyisiä palvelutuotteita, osaamista ja referenssi projekteja, energiatehokkuuslakia, voimalaitosten energiatehokkuus-potentiaalia ja erilaisia energiakatselmusmalleja. Päätöksenteon tueksi tehdään referenssiprojektina energia-analyysi voimalaitokselle, jossa voimalaitoksesta tehdään ipsePRO simulointiohjelmalla mallinnus. Mallinnuksen ja koeajojen avulla tutkitaan voimalaitoksen minimikuorman optimointia. Markkinatutkimuksessa selvitetään lainsäädännön vaikutusta, nykyistä markkinatilannetta, potentiaalisia asiakkaita, kilpailijoita ja ABB:n mahdollisuuksia toimia alalla SWOT–analyysin avulla. Tutkimuksen tulosten perusteella tehdään päätös tuotteistaa voimalaitoksille palvelutuote, joka sisältää kaikki toimet energiatehokkuuslain asettamien vaatimusten täyttämiseen yrityksen energiakatselmuksen vastuuhenkilön, energiakatselmuksen ja kohdekatselmuksien teon osalta. Lisäksi työn aikana Energiavirasto myönsi ABB:lle pätevyyden toimia yrityksen energiakatselmuksen vastuuhenkilönä, mikä on edellytyksenä palvelun tarjoamiselle.
Resumo:
The application of VSC-HVDC technology throughout the world has turned out to be an efficient solution regarding a large share of wind power in different power systems. This technology enhances the overall reliability of the grid by utilization of the active and reactive power control schemes which allows to maintain frequency and voltage on busbars of the end-consumers at the required level stated by the network operator. This master’s thesis is focused on the existing and planned wind farms as well as electric power system of the Åland Islands. The goal is to analyze the wind conditions of the islands and appropriately predict a possible production of the existing and planned wind farms with a help of WAsP software program. Further, to investigate the influence of increased wind power it is necessary to develop a simulation model of the electric grid and VSC-HVDC system in PSCAD and examine grid response to different wind power production cases with respect to the grid code requirements and ensure the stability of the power system.
Resumo:
The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.
Resumo:
Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world’s electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, the US consumer will favor energy sources that can satisfy the need for electricity and other energy-intensive products (1) on a sustainable basis with minimal environmental impact, (2) with enhanced reliability and safety and (3) competitive economics. Given that advances are made to fully apply the potential benefits of nuclear energy systems, the next generation of nuclear systems can provide a vital part of a long-term, diversified energy supply. The Department of Energy has begun research on such a new generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals [1]. These future nuclear power systems will require advances in materials, reactor physics as well as heat transfer to realize their full potential. In this paper, a summary of these advanced nuclear power systems is presented along with a short synopsis of the important heat transfer issues. Given the nature of research and the dynamics of these conceptual designs, key aspects of the physics will be provided, with details left for the presentation.