949 resultados para Potential-energy Surfaces


Relevância:

80.00% 80.00%

Publicador:

Resumo:

alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH3C CCH3) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH3 loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP + 2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C-4 side-chain, followed by cyclization and/or low-energy H atom beta-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph center dot)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH3 loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neutral and cationic \[C-2,P-2] were investigated by a combination of mass spectrometry and electronic structure calculations. The cationic \[C-2,P-2](.+) potential energy surface including all relevant minima, transition states and fragmentation products was calculated at the B3LYP/6-311G(3df) level of theory. The most stable structures are linear PCCP.+ 1(.+) (E-rel=0 kcal mol(-1)), a three-membered ring with exocyclic phosphorus c-(PCC)-P 2(.+) (E-rel = 40.8 kcal mol(-1)), and the rhombic isomer 3(.+) (E-rel = 24.9 kcal mol(-1)). All fragmentation channels are significantly higher in energy than any of the \[C-2,P-2](.+) isomers. Experimentally, \[C-2,P-2](.+) ions are generated under high vacuum conditions by electron ionization of two different precursors. The fragmentation of \[C-2,P-2](.+) on collisional activation is preceded by rearrangement reactions which obscure the structural connectivity of the ions. The existence and the high stability of neutral \[C-2,P-2] were proved by a neutralization-reionization (NR) experiment. Although an unambiguous structural assignment of the neutral species cannot be drawn, both theory and experiment suggest that the long-sought neutral, linear PCCP 1 is generated using the NR technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the design of active control for car suspension systems using a particular form of energy-based control called Interconnection-and-Damping-Assignment Passivity-Based Control (IDA-PBC). This approach allows one to shape the kinetic and potential energy as well as modify the power flow among different components of the system by changing the interconnection and dissipative structure in a meaningful way. Different controller parameterisations are considered to design a class of controllers for active suspension systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the manoeuvring of underactuated surface vessels. The control objective is to steer the vessel to reach a manifold which encloses a waypoint. A transformation of configuration variables and a potential field are used in a Port-Hamiltonian framework to design an energy-based controller. With the proposed controller, the geometric task associated with the manoeuvring problem depends on the desired potential energy (closed-loop) and the dynamic task depends on the total energy and damping. Therefore, guidance and motion control are addressed jointly, leading to model-energy-based trajectory generation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large scale solar plants are gaining recognition as potential energy sources for future. In this paper, the feasibility of using electric vehicles (EVs) to control a solar powered micro-grid is investigated in detail. The paper presents a PSCAD/EMTDC based model for the solar powered micro-grid with EVs. EVs are expected to have both the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) capability, through which energy can either be injected into or extracted from the solar powered micro-grid to control its energy imbalance. Using the model, the behaviour of the micro-grid is investigated under a given load profile, and the results indicate that a minimum number of EVs are required to meet the energy imbalance and it is time dependent and influenced by various factors such as depth of charge, commuting profiles, reliability etc...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The close relationship between rain and lightning is well known. However, there are numerous documented observations of heavy rain accompanied by little or no lightning activity (Williams et al, 1992; Jayaratne, 1993). Kuleshov et al (2002) studied thunderstorm distribution and frequency in Australia and concluded that thunderstorm frequency (as expressed by number of thunder-days) in Australia does not, in general, appear to vary in any consistent way with rainfall. However, thunder-days describe occurrence of thunderstorms as heard by an observer, and therefore could be only proxy data to evaluate actual lightning activity (i.e. number of total or cloud-to-ground flashes). Field experiments have demonstrated a strong increase in lightning activity with convective available potential energy (CAPE). It has also been shown that CAPE increases linearly with potential wet bulb temperature, Tw (Williams et al, 1992). In this study, we examine the relationship between lightning ground flash incidence and the two parameters – surface rainfall and surface wet bulb maximum temperature for selected localities around Australia...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bats (Chiroptera) are generally awkward crawlers, but the common vampire bat (Desmodus rotundus) and the New Zealand short-tailed bat (Mystacina tuberculata) have independently evolved the ability to manoeuvre well on the ground. In this study we describe the kinematics of locomotion in both species, and the kinetics of locomotion in M. tuberculata. We sought to determine whether these bats move terrestrially the way other quadrupeds do, or whether they possess altogether different patterns of movement on the ground than are observed in quadrupeds that do not fly. Using high-speed video analyses of bats moving on a treadmill, we observed that both species possess symmetrical lateral-sequence gaits similar to the kinematically defined walks of a broad range of tetrapods. At high speeds, D. rotundus use an asymmetrical bounding gait that appears to converge on the bounding gaits of small terrestrial mammals, but with the roles of the forelimbs and hindlimbs reversed. This gait was not performed by M. tuberculata. Many animals that possess a single kinematic gait shift with increasing speed from a kinetic walk (where kinetic and potential energy of the centre of mass oscillate out of phase from each other) to a kinetic run (where they oscillate in phase). To determine whether the single kinematic gait of M. tuberculata meets the kinetic definition of a walk, a run, or a gait that functions as a walk at low speed and a run at high speed, we used force plates and high-speed video recordings to characterize the energetics of the centre of mass in that species. Although oscillations in kinetic and potential energy were of similar magnitudes, M. tuberculata did not use pendulum-like exchanges of energy between them to the extent that many other quadrupedal animals do, and did not transition from a kinetic walk to kinetic run with increasing speed. The gait of M. tuberculata is kinematically a walk, but kinetically run-like at all speeds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a trajectory-tracking control strategy for a class of mechanical systems in Hamiltonian form. The class is characterised by a simplectic interconnection arising from the use of generalised coordinates and full actuation. The tracking error dynamic is modelled as a port-Hamiltonian Systems (PHS). The control action is designed to take the error dynamics into a desired closed-loop PHS characterised by a constant mass matrix and a potential energy with a minimum at the origin. A transformation of the momentum and a feedback control is exploited to obtain a constant generalised mass matrix in closed loop. The stability of the close-loop system is shown using the close-loop Hamiltonian as a Lyapunov function. The paper also considers the addition of integral action to design a robust controller that ensures tracking in spite of disturbances. As a case study, the proposed control design methodology is applied to a fully actuated robotic manipulator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drying of food materials offers a significant increase in the shelf life of food materials, along with the modification of quality attributes due to simultaneous heat and mass transfer. Shrinkage and variations in porosity are the common micro and microstructural changes that take place during the drying of mostly the food materials. Although extensive research has been carried out on the prediction of shrinkage and porosity over the time of drying, no single model exists which consider both material properties and process condition in the same model. In this study, an attempt has been made to develop and validate shrinkage and porosity models of food materials during drying considering both process parameters and sample properties. The stored energy within the sample, elastic potential energy, glass transition temperature and physical properties of the sample such as initial porosity, particle density, bulk density and moisture content have been taken into consideration. Physical properties and validation have been made by using a universal testing machine ( Instron 2kN), a profilometer (Nanovea) and a pycnometer. Apart from these, COMSOL Multiphysics 4.4 has been used to solve heat and mass transfer physics. Results obtained from models of shrinkage and porosity is quite consistent with the experimental data. Successful implementation of these models would ensure the use of optimum energy in the course of drying and better quality retention of dried foods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical analysis of cracked structures often involves numerical estimation of stress intensity factors (SIFs) at a crack tip/front. A newly developed formulation called universal crack closure integral (UCCI) for the evaluation of potential energy release rates (PERRs) and the corresponding SIFs is presented in this paper. Unlike the existing element dedicated forms of crack closure integrals (MCCI, VCCI) with application limited to finite element analysis, this new numerical SIF/PERR estimation technique is independent of the basic stress analysis procedure, making it universally applicable. The second merit of this procedure is that it avoids the generally error-producing zones close to the crack tip/front singularity. The UCCI procedure, based on Irwin's original CCI, is formulated and explored using a simple 2D problem of a straight crack in an infinite sheet. It is then applied to some three-dimensional crack geometries with the stresses and displacements obtained from a boundary element program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energetics of the ground and excited state intramolecular proton transfer in salicylic acid have been studied by ab initio molecular orbital calculations using the 6-31G** basis set at the restricted Hartree-Fock (RHF) and configuration interaction-single excitation (CIS) levels and also using the semiempirical method AM1 at the RHF level as well as with single and pair doubles excitation configuration interaction spanning eight frontier orbitals (PECI = 8). The ab initio potential energy profile for intramolecular proton transfer in the ground state reveals a single minimum corresponding to the primary form, in the first excited singlet state, however, there are two minima corresponding to the primary and tautomeric forms, separated by a barrier of similar to 6 kcal/mol, thus accounting for dual emission in salicylic acid. Electron density changes with electronic excitation and tautomerism indicate no zwitterion formation. Changes in spectral characteristics with change in pH, due to protonation and deprotonation of salicylic acid, are also accounted for, qualitatively. Although the AM1 calculations suggest a substantial barrier for proton transfer in the ground as well as the first excited state of SA, it predicts the transition wavelength in near quantitative accord with the experimental results for salicylic acid and its protonated and deprotonated forms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A lattice-gas model of multilayer adsorption has been solved in the mean-field approximation by a different numerical method. Earlier workers obtained a single solution for all values of temperature and pressure. In the present work, multiple solutions have been obtained in certain regions of temperature and pressure which give rise to bysteresis in the adsorption isotherm. In addition, we have obtained a parameter which behaves like an order parameter for the transition. The potential-energy function shows a double minimum in the region of bysteresis and a single maximum elsewhere.