946 resultados para Poly(5-amino-1-naphthol)
Resumo:
This article deals with (1) synthesis of novel cyclic carbonate monomer (2-oxo [1,3]dioxan-5-yl)carbamic acid benzyl ester (CAB) containing protected amino groups; (2) ring-opening copolymerization of the cyclic monomer with L-lactide (LA) to provide novel degradable poly(ester-carbonate)s with functional groups; (3) removal of the protective benzyloxycarbonyl (Cbz) groups by catalytic hydrogenation to afford the corresponding poly(ester-co-carbonate)s with free amino groups; (4) grafting of oligopeptide Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY, abbreviated as RGD) onto the copolymer pendant amino groups in the presence of 1,1'-carbonyldiimidazole (CDI).
Resumo:
CsHllNO2.C9HilNO2, Mr = 282.3, P1, a = 5.245 (1), b = 5.424 (1), c = 14.414 (2) A, a = 97.86 (1), fl = 93-69 (2), y = 70-48 (2) °, V= 356 A 3, Z = 1, O m = 1-32 (2), Dx = 1.32 g cm-3, h(Mo Ka) = 0-7107 A, g = 5-9 cm-1, F(000) = 158, T= 298 K, R=0.035 for 1518 observed reflections with I>2tr(I). The molecules aggregate in double layers, one ayer made up of L-phenylalanine molecules and the other of D-valine molecules. Each double layer is stabilized by interactions involving main-chain atoms of both types of molecules. The interactions include hydrogen bonds which give rise to two head-to-tail sequences. The arrangement of molecules in the complex is almost the same as that in the structure of DL-valine (and DL-leucine and DL-isoleucine) except for the change in the side chain of L molecules. The molecules in crystals containing an equal number of L and O hydrophobic amino-acid molecules thus appear to aggregate in a similar fashion, irrespective of the precise details of the side chain.
Resumo:
Cantello, Barrier C. C.; Eggleston, Drake S.; Haigh, David; Haltiwanger, R. Curtis; Heath, Catherine M.; Hindley, Richard M.; Jennings, Keith R.; Sime, John T.; Woroniecki, Stefan R. SmithKline Beecham Pharmaceuticals, Surrey, UK. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1994), (22), 3319-24. Publisher: Royal Society of Chemistry, CODEN: JCPRB4 ISSN: 0300-922X. Journal written in English. CAN 122:105736 AN 1995:237497 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract A novel biotransformation system for the redn. of carbon-carbon double bonds in 5-benzylidenethiazolidine-2,4-diones to give the corresponding 5-benzylthiazolidine-1,4-diones, using whole cells of red yeasts, is described. These reduced compds., which are recovered in good yield, are of potential use in the treatment of non-insulin dependent diabetes mellitus. The mild reaction conditions developed allow redn. of 5-benzylidenethiazolidine-2,4-diones contg. other functionalities which are not compatible with alternative redn. methods. The biocatalytic redn. is enantioselective and the synthesis of R-(+)-5-(4-{2-[methyl(2-pyridyl)amino]ethoxy}benzyl)thiazolidine-2,4-dione by Rhodotorula rubra CBS 6469 and structure confirmation by X-ray crystallog. is detailed. Optimization of reaction conditions (including immobilization) for these whole cell redn. system is described.
Resumo:
The extracting agent 2,6-bis(4,6-di-pivaloylamino-1,3,5-triazin-2-yl)-pyridine (L-5) in n-octanol was found, in synergy with 2-bromodecanoic acid, to give D-Am/D-Eu separation factors (SFs) between 2.4 and 3.7 when used to extract the metal ions from 0.02-0.12 M HNO3. Slightly higher SFs (4-6) were obtained in the absence of the synergist when the ligand was used to extract Am(III) and Eu(III) from 0.98 M HNO3. In order to investigate the possible nature of the extracted species crystal structures of L-5 and the complex formed between Yb(III) with 2,6-bis(4,6-di-amino-1,3,5-triazin-2-yl)-pyridine (L-4) were also determined. The structure of L-5 shows 3 methanol solvent molecules all of which form 2 or 3 hydrogen bonds with triazine nitrogen atoms, amide nitrogen or oxygen atoms, or pyridine nitrogen atoms. However, L-5 is relatively unstable in metal complexation reactions and loses amide groups to form the parent tetramine L-4. The crystal structure of Yb(L-4)(NO3)(3) shows ytterbium in a 9-coordinate environment being bonded to three donor atoms of the ligand and three bidentate nitrate ions. The solvent extraction properties of L-4 and L-5 are far inferior to those found for the 2,6-bis-(1,2,4-triazin-3-yl)-pyridines (L-1) which have SF values of ca. 140 and theoretical calculations have been made to compare the electronic properties of the ligands. The electronic charge distribution in L-4 and L-5 is similar to that found in other terdentate ligands such as terpyridine which have equally poor extraction properties and suggests that the unique properties of L-1 evolve from the presence of two adjacent nitrogen atoms in the triazine rings.
Resumo:
New Pd(II), Pt(II) and Re(V) complexes of 3-aminosalicylic acid (H(2)salNH(2)) and 3-hydroxyantranilic acid (HantOH) have been prepared, cis-[Pt (HsalNH)(PPh3)(2)] center dot 0.25C(2)H(5)OH (1), trans-[PdCl(salNH(2))(PPh3)(2)](2), trans-[ReOI2(HsalNH(2))(PPh3)] center dot (CH3)(2)CO (3), cis-[Pt(HantO)(PPh3)(2)] (4), trans-[PdCl(antOH)(PPh3)(2)] center dot 4H(2)O (5), [PdCl(antOH)(bipy)] center dot C2H5OH (6), [PdCl2(HantOH)(2)] (7) and trans-[ReOI(HantO)(PPh3)(2)] center dot (CH3)(2)CO (8). The crystal structure of complex I was determined showing chelation of HsalNH(2-) through the adjacent nitrogen and oxygen atoms of the amino and phenolate groups. Infrared and H-1 NMR spectroscopic data for the complexes are presented. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The reaction of living anionic polymers with 2,2,5,5-tetramethyl-1-(3-bromopropyl)-1-aza-2,5- disilacyclopentane (1) was investigated using coupled thin layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of byproducts as well as the major product were determined. The anionic initiator having a protected primary amine functional group, 2,2,5,5-tetramethyl- 1-(3-lithiopropyl)-1-aza-2,5-disilacyclopentane (2), was synthesized using all-glass high-vacuum techniques, which allows the long-term stability of this initiator to be maintained. The use of 2 in the preparation of well-defined aliphatic primary amine R-end-functionalized polystyrene and poly(methyl methacrylate) was investigated. Primary amino R-end-functionalized poly(methyl methacrylate) can be obtained near-quantitatively by reacting 2 with 1,1-diphenylethylene in tetrahydrofuran at room temperature prior to polymerizing methyl methacrylate at -78 °C. When 2 is used to initiate styrene at room temperature in benzene, an additive such as N,N,N',N'- tetramethylethylenediamine is necessary to activate the polymerization. However, although the resulting polymers have narrow molecular weight distributions and well-controlled molecular weights, our mass spectra data suggest that the yield of primary amine α-end-functionalized polystyrene from these syntheses is very low. The majority of the products are methyl α-end-functionalized polystyrene.
Resumo:
The crystal structures of the 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid with the aliphatic Lewis bases diisopropylamine and hexamethylenetetramine, viz. diisopropylaminium 2-carboxy-4,5-dichlorobenzoate (1) and hexamethylenetetraminium 2-carboxy-4,5-dichlorobenzoate hemihydrate (2), have been determined. Crystals of both 1 and 2 are triclinic, space group P-1, with Z = 2 in cells with a = 7.0299(5), b = 9.4712(7), c = 12.790(1)Å, α = 99.476(6), β = 100.843(6), γ = 97.578(6)o (1) and a = 7.5624(8), b = 9.8918(8), c = 11.5881(16)Å, α = 65.660(6), β = 86.583(4), γ = 86.987(8)o (2). In each, one-dimensional hydrogen-bonded chain structures are found: in 1 formed through aminium N+-H...Ocarboxyl cation-anion interactions. In 2, the chains are formed through anion carboxyl O...H-Obridging water interactions with the cations peripherally bound. In both structures, the hydrogen phthalate anions are essentially planar with short intra-species carboxylic acid O-H...Ocarboxyl hydrogen bonds [O…O, 2.381(3) Å (1) and 2.381(8) Å (2)].
Resumo:
1,4-Diazabicyclo[2.2.2]octane (DABCO) forms well-defined co-crystals with 1,2-diiodotetrafluorobenzene (1,2-DITFB), [(1,2-DITFB)2DABCO], and 1,3,5-triiodotrifluorobenzene, [(1,3,5-TITFB)2DABCO]. Both systems exhibited lower-than-expected supramolecular connectivity, which inspired a search for polymorphs in alternative crystallization solvents. In dichloromethane solution, the Menshutkin reaction was found to occur, generating chloride anions and quaternary ammonium cations through the reaction between the solvent and DABCO. The controlled in situ production of chloride ions facilitated the crystallization of new halogen bonded networks, DABCO–CH2Cl[(1,2-DITFB)Cl] (zigzag X-bonded chains) and (DABCO–CH2Cl)3[(1,3,5-TITFB)2Cl3]·CHCl3 (2D pseudo-trigonal X-bonded nets displaying Borremean entanglement), propagating with charge-assisted C–I···Cl– halogen bonds. The method was found to be versatile, and substitution of DABCO with triethylamine (TEA) gave (TEA-CH2Cl)3[(1,2-DITFB)Cl3]·4(H2O) (mixed halogen bond hydrogen bond network with 2D supramolecular connectivity) and TEA-CH2Cl[(1,3,5-TITFB)Cl] (tightly packed planar trigonal nets). The co-crystals were typically produced in high yield and purity with relatively predictable supramolecular topology, particularly with respect to the connectivity of the iodobenzene molecules. The potential to use this synthetic methodology for crystal engineering of halogen bonded architectures is demonstrated and discussed.
Resumo:
We report the ferroelectric and pyroelectric properties of the composite films of lithium tantalate (LT) nanoparticle in poly(vinylidene fluoride) PVDF matrix at different volume fractions of LT (f(LT) = 0.047, 0.09 and 0.17). For an applied electric field of 150 kV cm(-1) the nonvolatile polarization of the composite was observed to increase from 0.014 mu C cm(-2) at f(LT) = 0 to 2.06 mu C cm(-2) at f(LT) = 0.17. For f(LT) = 0.17, the composite films exhibit a saturated ferroelectric hysteresis loop with a remanent polarization (2P(r) = 4.13 mu C cm(-2)). Compared with pure poled PVDF the composite films also showed a factor of about five enhancement in the pyroelectric coefficient at f(LT) = 0.17. When used in energy detection mode the pyroelectric voltage sensitivity of the composite films was found to increase from 3.93 to 18.5 VJ(-1) with an increase in f(LT) from 0.0 to 0.17.
Resumo:
Iron(III) complexes, (NHEt3)[Fe(III)(sal-met)(2)] and (NHEt3)[Fe(III)(sal-phe)(2)], of amino acid Schiffbase ligands, viz., N-salicylidene-L-methionine and N-salicylidene L-phenylalanine, have been prepared and their binding to bovine serum albumin (BSA) and photo-induced BSA cleavage activity have been investigated. The complexes are structurally characterized by single crystal X-ray crystallography. The crystal Structures of the discrete mononuclear rnonoanionic complexes show FeN2O4 octahedral coordination geometry in which the tridentate dianionic amino acid Schiff base ligand binds through phenolate and carboxylate oxygen and imine nitrogen atoms. The imine nitrogen atoms are trans to each other. The Fe-O and Fe-N bond distances range between 1.9 and 2.1 angstrom. The sal-met complex has two pendant thiomethyl groups. The high-spin iron(III) complexes (mu(eff) similar to 5.9 mu(B)) exhibit quasi-reversible Fe(III)/Fe(II) redox process near -0.6 V vs. SCE in water. These complexes display a visible electronic hand near 480 nm in tris-HCl buffer assignable to the phenolate-to-iron(III) charge transfer transition. The water soluble complexes bind to BSA giving binding constant values of similar to 10(5) M-1. The Complexes show non-specific oxidative cleavage of BSA protein on photo-irradiation with UV-A light of 365 nm.
Resumo:
l-Lysine acetate crystallises in the monoclinic space group P21 with a = 5.411 (1), b = 7.562(1), c= l2.635(2) Å and β = 91.7(1). The crystal structure was solved by direct methods and refined to an R value of 0.049 using the full matrix least squares method. The conformation and the aggregation of lysine molecules in the structure are similar to those found in the crystal structure of l-lysine l-aspartate. A conspicuous similarity between the crystal structures of l-arginine acetate and l-lysine acetate is that in both cases the strongly basic side chain, although having the largest pK value, interacts with the weakly acidic acetate group leaving the α-amino and the α-carboxylate groups to take part in head-to-tail sequences. These structures thus indicate that electrostatic effects are strongly modulated by other factors so as to give rise to head-to-tail sequences which have earlier been shown to be an almost universal feature of amino acid aggregation in the solid state.
Resumo:
The crystal structures of (1) L-arginine D-asparate, C6HIsN40~.C4H6NO4 [triclinic, P1, a=5.239(1), b=9.544(1), c=14.064(2)A, a=85"58(1), /3=88.73 (1), ~/=84.35 (1) °, Z=2] and (2) L-arginine D-glutamate trihydrate, C6H15N40~-.CsHsNO4.3H20 [monoclinic, P2~, a=9.968(2), b=4.652(1), c=19.930 (2) A, fl = 101.20 (1) °, Z = 2] have been determined using direct methods. They have been refined to R =0.042 and 0.048 for 2829 and 2035 unique reflections respectively [I>2cr(I)]. The conformations of the two arginine molecules in the aspartate complex are different from those observed so far in the crystal structures of arginine, its salts and complexes. In both complexes, the molecules are organized into double layers stacked along the longest axis. The core of each double layer consists of two parallel sheets made up of main-chain atoms, each involving both types of molecules. The hydrogen bonds within each sheet and those that interconnect the two sheets give rise to EL-, DD- and DE-type head-to-tail sequences. Adjacent double layers in (1) are held together by side-chain-side-chain interactions whereas those in (2) are interconnected through an extensive network of water molecules which interact with sidechain guanidyl and carboxylate groups. The aggregation pattern observed in the two LD complexes is fundamentally different from that found in the corresponding EL complexes.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.
Resumo:
A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.