986 resultados para Pius VI, Pope, 1717-1799
Resumo:
Using an all-electron band structure approach, we have systematically calculated the natural band offsets between all group IV, III-V, and II-VI semiconductor compounds, taking into account the deformation potential of the core states. This revised approach removes assumptions regarding the reference level volume deformation and offers a more reliable prediction of the "natural" unstrained offsets. Comparison is made to experimental work, where a noticeable improvement is found compared to previous methodologies.
Resumo:
ZnTe epilayers were grown on GaAs(0 0 1) substrates by molecular beam epitaxy (MBE) at different VI/II beam equivalent pressure (BEP) ratios (R-VI/II) in a wide range of 0.96-11 with constant Zn flux. Based on in situ reflection high-energy electron diffraction (RHEED) observation, two-dimensional (2D) growth mode can be formed by increasing the R-VI/II to 2.8. The Te/Zn pressure ratios lower than 4.0 correspond to Zn-rich growth state, while the ratios over 6.4 correspond to Te-rich one. The Zn sticking coefficient at various VI/II ratios are derived by the growth rate measurement. The ZnTe epilayer grown at a R-VI/II of 6.4 displays the narrowest full-width at half-maximum (FWHM) of double-crystal X-ray rocking curve (DCXRC) for (0 0 4) reflection. Atomic force microscopy (AFM) characterization shows that the grain size enlarges drastically with the R-VI/II. The surface root-mean-square (RMS) roughness decreases firstly, attains a minimum of 1.14 nm at a R-VI/II of 4.0 and then increases at higher ratios. It is suggested that the most suitable R-VI/II be controlled between 4.0 and 6.4 in order to grow high-quality ZnTe epitaxial thin films.
Resumo:
Although metalorganic vapor phase epitaxy (MOVPE) is generally regarded as a non-equillibrium process, it can be assumed that a chemical equilibrium is established at the vapor-solid interface in the diffusion limited region of growth rate. In this paper, an equilibrium model was proposed to calculate the relation between vapor and solid compositions for II-VI ternary alloys. Metastable alloys in the miscibility gap may not be obtained when the growth temperature is lower than the critical temperature of the system. The influence of growth temperature, reactor pressure, input VI/II ratio, and input composition of group VI reactants has been calculated for ZnSSe, ZnSeTe and ZnSTe. The results are compared with experimental data for the ZnSSe and ZnSTe systems.
Resumo:
对MOCVD生长Hg_(1-x)Cd_xTe进行了热力学分析.所用的起始原材料为Hg、DM-Cd和R_2Te.计算结果一方面表明CdTe优先并入倾向使得在通常的DAG工艺中x值非常不易控制.另一方表明即使在Hg存在的情况下,也可以沉积几平纯的CdTe,这对实现IMP工艺非常有利,计算结果还表明II/VI比对HgCdTe的组分控制起着关键性的作用.在DAG工艺中,较低的II/VI比可以改善对x值的控制能力,LMP-DAG工艺是降低II/VI比的较好途径.还计算了生长温度和反应室压力对固相组分的影响以及LMP-DAG工艺中生长温度与HgCdTe组分对最低汞分压的影响.