979 resultados para Pathogen
Resumo:
n recent years, declines of honey bee populations have received massive media attention worldwide, yet attempts to understand the causes have been hampered by a lack of standardisation of laboratory techniques. Published as a response to this, the COLOSS BEEBOOK is a unique collaborative venture involving 234 bee scientists from 34 countries, who have produced the definitive guide to how to carry out research on honey bees. It is hoped that these volumes will become the standards to be adopted by bee scientists worldwide. Volume II includes approximately 600 separate protocols dealing with the study of the pests and diseases of the honey bee, Apis mellifera. These cover epidemiology and surveying techniques, virus diseases, bacterial diseases such as European and American foulbrood, fungal and microsporidian diseases such as Nosema, mites such as Acarapis, Varroa and Tropilaelaps, and other pests such as the small hive beetle.
Resumo:
Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen (''pathogens'' hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.
Resumo:
Acinetobacter baumannii is a nosocomial pathogen associated with high morbidity and mortality in humans. Whereas infections with strains of Acinetobacter species have been reported in various situations, the importance of A baumannii as a nosocomial pathogen in veterinary hospitals has not been studied so far. In this retrospective case series, we describe 17 dogs and 2 cats from which A baumannii had been isolated during a 2 1/2-year period. In 7 dogs, A baumannii induced systemic signs of illness, whereas 12 animals showed signs of local infection. In all animals with systemic infection, and in 2 with localized infection, A baumannii contributed to the death of the animal or contributed to euthanasia; the remaining 8 dogs and both cats recovered. Molecular typing of the isolates with restriction polymorphisms of ribosomal DNA provided evidence of nosocomial spread of this pathogen and for the presence of several strains of A baumannii in the hospital environment.
Resumo:
Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels
Resumo:
Chronic infection and inflammation are defining characteristics of cystic fibrosis (CF) airway disease. Conditions within the airways of patients living with CF are conducive to colonisation by a variety of opportunistic bacterial, viral and fungal pathogens. Improved molecular identification of microorganisms has begun to emphasise the polymicrobial nature of infections in the CF airway microenvironment. Changes to CF airway physiology through loss of cystic fibrosis transmembrane conductance regulator functionality result in a wide range of immune dysfunctions, which permit pathogen colonisation and persistence. This review will summarise the current understanding of how CF pathogens infect, interact with and evade the CF host.
Resumo:
Salmonella enterica subspecies 1 serovar Typhimurium is a principal cause of human enterocolitis. For unknown reasons, in mice serovar Typhimurium does not provoke intestinal inflammation but rather targets the gut-associated lymphatic tissues and causes a systemic typhoid-like infection. The lack of a suitable murine model has limited the analysis of the pathogenetic mechanisms of intestinal salmonellosis. We describe here how streptomycin-pretreated mice provide a mouse model for serovar Typhimurium colitis. Serovar Typhimurium colitis in streptomycin-pretreated mice resembles many aspects of the human infection, including epithelial ulceration, edema, induction of intercellular adhesion molecule 1, and massive infiltration of PMN/CD18(+) cells. This pathology is strongly dependent on protein translocation via the serovar Typhimurium SPI1 type III secretion system. Using a lymphotoxin beta-receptor knockout mouse strain that lacks all lymph nodes and organized gut-associated lymphatic tissues, we demonstrate that Peyer's patches and mesenteric lymph nodes are dispensable for the initiation of murine serovar Typhimurium colitis. Our results demonstrate that streptomycin-pretreated mice offer a unique infection model that allows for the first time to use mutants of both the pathogen and the host to study the molecular mechanisms of enteric salmonellosis.
Resumo:
Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.
Resumo:
Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens.
Resumo:
Mononuclear phagocytes are designed to neutralize systemic bacterial and fungal infections. However, the exact regulation of these functions are largely unknown. CARD9 was first identified as an immune-specific adaptor protein of unclear function. Here, we have found that Card9 is specifically expressed in monocyte-origin cell populations. To better understand the biological function of Card9, we have generated Card9-deficient (Card9-/-) mice. Hematologic profiling and histological analysis of Card9-/- mice revealed a decreased leukocyte/myeloid cell count, delayed monocyte maturation in bone marrow as well as monocyte counts in the peripheral blood. Upon M-CSF stimulation, Card9-/- macrophages further exhibit a partial loss in IKK phosphorylation. As a consequence, in vivo challenge with Listeria monocytogenes in Card9-/- mice results in a higher susceptibility to infection-associated inflammation and fatality. Collectively, these data suggest that CARD9 is required for monocyte development and function. ^ At the cellular level, Card9-/- macrophages are defective in killing Listeria and the production of pro-inflammatory cytokines. Molecular characterizations have further demonstrated that CARD9 inducibly interacts with NOD2, controls p38 MAPK activation, and regulates ROS production during Listeria infections. Cytotrap screening showed that CARD9 could physically associate with various g&barbelow;uanine e&barbelow;xchange f&barbelow;actor (GEF) proteins that are essential for regulating ROS production. In summary, we have first identified and provided genetic evidence that CARD9 functions as a novel regulator during monocyte development and serves as an essential protein adaptor for p38 MAPK activation during bacterial clearance processes in macrophages. ^
Resumo:
The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.
Resumo:
Background: Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results: We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion: To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.
Resumo:
Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, 1H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.
Resumo:
Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.