879 resultados para Particle-based Model
Resumo:
We have attempted to bring together two areas which are challenging for both IS research and practice: forms of coordination and management of knowledge in the context of global, virtual software development projects. We developed a more comprehensive, knowledge-based model of how coordination can be achieved, and\illustrated the heuristic and explanatory power of the model when applied to global software projects experiencing different degrees of success. We first reviewed the literature on coordination and determined what is known about coordination of knowledge in global software projects. From this we developed a new, distinctive knowledge-based model of coordination, which was then employed to analyze two case studies of global software projects, at SAP and Baan, to illustrate the utility of the model.
Resumo:
Purpose: Short product life cycle and/or mass customization necessitate reconfiguration of operational enablers of supply chain (SC) from time to time in order to harness high levels of performance. The purpose of this paper is to identify the key operational enablers under stochastic environment on which practitioner should focus while reconfiguring a SC network. Design/methodology/approach: The paper used interpretive structural modeling (ISM) approach that presents a hierarchy-based model and the mutual relationships among the enablers. The contextual relationship needed for developing structural self-interaction matrix (SSIM) among various enablers is realized by conducting experiments through simulation of a hypothetical SC network. Findings: The research identifies various operational enablers having a high driving power towards assumed performance measures. In this regard, these enablers require maximum attention and of strategic importance while reconfiguring SC. Practical implications: ISM provides a useful tool to the SC managers to strategically adopt and focus on the key enablers which have comparatively greater potential in enhancing the SC performance under given operational settings. Originality/value: The present research realizes the importance of SC flexibility under the premise of reconfiguration of the operational units in order to harness high value of SC performance. Given the resulting digraph through ISM, the decision maker can focus the key enablers for effective reconfiguration. The study is one of the first efforts that develop contextual relations among operational enablers for SSIM matrix through integration of discrete event simulation to ISM. © Emerald Group Publishing Limited.
Resumo:
Linguistic theory, cognitive, information, and mathematical modeling are all useful while we attempt to achieve a better understanding of the Language Faculty (LF). This cross-disciplinary approach will eventually lead to the identification of the key principles applicable in the systems of Natural Language Processing. The present work concentrates on the syntax-semantics interface. We start from recursive definitions and application of optimization principles, and gradually develop a formal model of syntactic operations. The result – a Fibonacci- like syntactic tree – is in fact an argument-based variant of the natural language syntax. This representation (argument-centered model, ACM) is derived by a recursive calculus that generates a mode which connects arguments and expresses relations between them. The reiterative operation assigns primary role to entities as the key components of syntactic structure. We provide experimental evidence in support of the argument-based model. We also show that mental computation of syntax is influenced by the inter-conceptual relations between the images of entities in a semantic space.
Resumo:
One of the ultimate aims of Natural Language Processing is to automate the analysis of the meaning of text. A fundamental step in that direction consists in enabling effective ways to automatically link textual references to their referents, that is, real world objects. The work presented in this paper addresses the problem of attributing a sense to proper names in a given text, i.e., automatically associating words representing Named Entities with their referents. The method for Named Entity Disambiguation proposed here is based on the concept of semantic relatedness, which in this work is obtained via a graph-based model over Wikipedia. We show that, without building the traditional bag of words representation of the text, but instead only considering named entities within the text, the proposed method achieves results competitive with the state-of-the-art on two different datasets.
Resumo:
2000 Mathematics Subject Classification: 60K15, 60K20, 60G20,60J75, 60J80, 60J85, 60-08, 90B15.
Resumo:
Random distributed feedback (DFB) fiber lasers have attracted a great attention since first demonstration [1]. Despite big advance in practical laser systems, random DFB fiber laser spectral properties are far away to be understood or even numerically modelled. Up to date, only generation power could be calculated and optimized numerically [1,2] or analytically [3] within the power balance model. However, spectral and statistical properties of random DFB fiber laser can not be found in this way. Here we present first numerical modelling of the random DFB fiber laser, including its spectral and statistical properties, using NLSE-based model. © 2013 IEEE.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
Competition between Higher Education Institutions is increasing at an alarming rate, while changes of the surrounding environment and demands of labour market are frequent and substantial. Universities must meet the requirements of both the national and European legislation environment. The Bologna Declaration aims at providing guidelines and solutions for these problems and challenges of European Higher Education. One of its main goals is the introduction of a common framework of transparent and comparable degrees that ensures the recognition of knowledge and qualifications of citizens all across the European Union. This paper will discuss a knowledge management approach that highlights the importance of such knowledge representation tools as ontologies. The discussed ontology-based model supports the creation of transparent curricula content (Educational Ontology) and the promotion of reliable knowledge testing (Adaptive Knowledge Testing System).
Resumo:
Advances in multiscale material modeling of structural concrete have created an upsurge of interest in the accurate evaluation of mechanical properties and volume fractions of its nano constituents. The task is accomplished by analyzing the response of a material to indentation, obtained as an outcome of a nanoindentation experiment, using a procedure called the Oliver and Pharr (OP) method. Despite its widespread use, the accuracy of this method is often questioned when it is applied to the data from heterogeneous materials or from the materials that show pile-up and sink-in during indentation, which necessitates the development of an alternative method. ^ In this study, a model is developed within the framework defined by contact mechanics to compute the nanomechanical properties of a material from its indentation response. Unlike the OP method, indentation energies are employed in the form of dimensionless constants to evaluate model parameters. Analysis of the load-displacement data pertaining to a wide range of materials revealed that the energy constants may be used to determine the indenter tip bluntness, hardness and initial unloading stiffness of the material. The proposed model has two main advantages: (1) it does not require the computation of the contact area, a source of error in the existing method; and (2) it incorporates the effect of peak indentation load, dwelling period and indenter tip bluntness on the measured mechanical properties explicitly. ^ Indentation tests are also carried out on samples from cement paste to validate the energy based model developed herein by determining the elastic modulus and hardness of different phases of the paste. As a consequence, it has been found that the model computes the mechanical properties in close agreement with that obtained by the OP method; a discrepancy, though insignificant, is observed more in the case of C-S-H than in the anhydrous phase. Nevertheless, the proposed method is computationally efficient, and thus it is highly suitable when the grid indentation technique is required to be performed. In addition, several empirical relations are developed that are found to be crucial in understanding the nanomechanical behavior of cementitious materials.^
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Resumo:
Acknowledgements This work contributes to the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy Technologies Institute (ETI). We acknowledge the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).
Resumo:
Government communication is an important management tool during a public health crisis, but understanding its impact is difficult. Strategies may be adjusted in reaction to developments on the ground and it is challenging to evaluate the impact of communication separately from other crisis management activities. Agent-based modeling is a well-established research tool in social science to respond to similar challenges. However, there have been few such models in public health. We use the example of the TELL ME agent-based model to consider ways in which a non-predictive policy model can assist policy makers. This model concerns individuals’ protective behaviors in response to an epidemic, and the communication that influences such behavior. Drawing on findings from stakeholder workshops and the results of the model itself, we suggest such a model can be useful: (i) as a teaching tool, (ii) to test theory, and (iii) to inform data collection. We also plot a path for development of similar models that could assist with communication planning for epidemics.
Resumo:
In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.
Resumo:
In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.