444 resultados para PRECIPITATE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dramatic rise in childhood obesity prevalence in the last two decades has prompted concern about the risk factors that may precipitate or maintain weight gain, or both, in early childhood. Media use has long been implicated in policy debates in Australia, particularly around limits to advertising. However the Australian research funding ecology and dominant paradigms in Australian communication and media studies have resulted in a lack of independent, nationally representative studies upon which to base advice. Australian researchers often can’t afford to collect the kind of data they would like in order to intervene productively as policy actors. As a test case for innovative ways round this dilemma, this paper mobilises secondary data analysis methodologies to explore potential influences of parenting on children’s media use and their weight status.

The research reported here uses data from the first three waves of the Longitudinal Study of Australian Children. Results from a path model suggest that children of mothers who were less consistent in the way in which they enforce their rules were more likely to adopt unhealthy lifestyle behaviours, such as sedentary behaviour and consuming unhealthy snacks. Of the lifestyle behaviours considered, time spent watching television or DVDs was the only predictor of child weight status in late childhood. These results suggest a clear pathway linking consistent parenting and other parental practices, children’s lifestyle behaviours and weight status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The commercial magnesium alloy AZ31 has been subjected to a range of solution treatment regimes. These have then been extruded and their microstructure, texture, and precipitate populations characterized along with their mechanical properties. During the solution treatment, Mn-enriched particles develop and these remain largely unchanged throughout subsequent processing steps. A direct link between grain size and texture has been found, with coarser-grained specimens showing sharper textures. VPSC modeling has been used to quantify the effect of texture on the tensile yield strength, and it has been found that sharper textures have larger tensile yield strengths. Since coarser grain sizes have reduced Hall–Petch hardening, but have an additional texture-strengthening component, a region on the Hall–Petch plot for tension has been identified in which there is an insensitivity of strength to grain size. This has been quantitatively modeled and a texture-modified Hall–Petch plot for tension has been developed. The Mn-rich particles have also been shown to provide precipitate strengthening to the alloy of up to 40 MPa. The compressive behavior was clearer, with the compressive yield strength being directly correlated to grain size and unaffected by texture or precipitation hardening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shape conversions of silver nanoplates were realized by heating and subsequent light irradiation. The initial silver nanoprisms were transformed into silver nanodisks gradually in the process of heating, which was possibly achieved through dissolving and readsorption of silver atoms on the surface of silver nanoplates. Subsequently, under light irradiation, the heating induced silver nanodisks were reversed to silver nanoprisms in the same solution. The dissolved oxygen was found to play a pivotal role in the shape conversion from nanoprism to nanodisk. In addition to heating, deionized water could induce the shape conversion of silver nanoplates when it was added to precipitate of the initial silver nanoprisms after centrifugation. Citrate in solution is essential to the photoinduced shape conversion process. Transmission electron microscopy (TEM) and extinction spectroscopy results demonstrated that localized surface plasmon resonance (LSPR) properties of silver nanoplates were effectively tuned through shape conversion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sheets of precipitate hardenable 2024 aluminium have been processed by rolling at liquid nitrogen temperature in order to refine the microstructure. A number of different aging/heat treating procedures have been utilised that have resulted in significantly different mechanical properties. The cryo-rolled material was heat treated at 150 °C for varying times and the resulting mechanical properties evaluated as a function of this holding time. The resulting properties were found to be strongly influenced by precipitates that formed either during the aging step, rolling process or the subsequent heat treatment. The formability of the cryo-rolled and heat treated material has been investigated using a limiting dome height test (Erichsen cupping test).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstructural characterization was used to examine the changes that occur in an Mg-6Sn-5Zn-0.3Na alloy from casting to extrusion at either 623 K or 723 K (350 _C or 450 _C) followed by artificial aging at 473 K (200 _C). In particular, the partitioning of Na was examined at each step using STEM-EDS mapping. Na atoms were found to preferentially partition to the Mg-Zn phase when present. After extrusion, when no Mg-Zn was observed, the spherical Mg2Sn particles were found to be enriched in Na, particularly at the higher extrusion temperature. Artificial aging following extrusion resulted in a change in Na partitioning, and a coarse distribution of Mg-Zn precipitate rods. Na microadditions led to a high as-extruded hardness, but a significant tension–compression yield asymmetry was still observed at room temperature. The compressive yield strength was found to decrease significantly after 1000 hours of aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anhydrous rare earth tris(cinnamates) [RE(cinn)3] (RE = La–Lu, Y and Sc and cinnH = trans-cinnamic acid) were prepared by metathesis in water and by direct reaction of the metal with cinnamic acid in a 1,2,4,5-tetramethylbenzene flux at ca. 200 °C. X-ray crystal structure determinations and X-ray powder data show that, in the solid state, the larger lanthanoids (La–Dy) form an isomorphous polymeric series consisting of homoleptic nine-coordinate metal centres bonded to three chelating and bridging tridentate cinnamates. The late REIII cinnamate (RE = Dy, Ho–Lu, Y) complexes also form linear one-dimensional polymeric chains with all RE metal atoms being seven-coordinate. The cinnamates are either bound tridentate bridging in a μ-η2:η1 fashion, or μ-η1:η1syn-syn bidentate bridging. A structural break occurs at dysprosium which has been characterised in both crystallographic forms, and gives solely the late RE form when precipitated at 80 °C. ScIII cinnamate was also isolated as an analytically pure precipitate which was, again, found to be anhydrous in nature. A structural change was identified by powder XRD between the late REIII cinnamates and ScIII cinnamate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work investigated the evolution of strain-induced NbC precipitates in a model austenitic Fe-30Ni-Nb steel deformed at 925 °C to a strain of 0.2 during post-deformation holding between 3 and 1000 s and their effect on the reloading flow stress. The precipitate particles preferentially nucleated on the nodes of the periodic dislocation networks constituting microband walls. Holding for 10 s resulted in the formation of fine, largely coherent NbC particles with a mean diameter of ∼5 nm, which displayed a cube-on-cube orientation relationship with austenite and caused the maximum increase in the reloading steady-state flow stress. A further increase in the holding time from 30 to 1000 s led to the formation of semi-coherent, gradually coarser and more widely spaced particles with a mean diameter of 8 nm and above, which led to a gradual decrease in the reloading steady-state flow stress. The holding time increase resulted in progressive disintegration of the dislocation substructure and dislocation annihilation through static recovery processes, which was also reflected by the measured softening fractions. The precipitate particle shape changed during post-deformation annealing from elliptical to faceted octahedral and subsequently to tetra-kai-decahedral. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The homogeneous and stable dispersion of carbon nanotubes (CNTs) in solvents is often a prerequisite for their use in advanced materials. Dispersion procedures, reagent concentration as well as the interactions among reagent, defective CNTs and near-perfect CNTs will affect the resulting CNT dispersion properties. This study, for the first time, presents a detailed comparison between two different approaches for dispersing CNTs. The results enhance our understanding of the interactions between surfactant, defective CNTs and near-perfect CNTs and thus provide insight into the mechanism of CNT dispersion. Dispersions of "as-produced" short multi-walled carbon nanotubes (MWCNTs) in N,N-dimethylformamide were prepared by two different surfactant (Triton X-100) assisted methods: ultrasonication and ultrasonication followed by centrifugation, decanting the supernatant and redispersing the precipitate. Visual observation and UV-visible spectroscopy results showed that the latter method produce a more stable dispersion with higher MWCNT content compared to dispersions produced by ultrasonication alone. Transmission electron microscopy and Raman spectroscopic investigations revealed that the centrifugation/ decanting step removed highly defective nanotubes, amorphous carbon and excess surfactant from the readily re-dispersible near-perfect CNT precipitate. This is contrary to other published findings where the dispersed MWCNTs were found in the supernatant. Thermogravimetric analysis showed that 95 % of Triton X-100 was removed by centrifugation/decanting step, and the remainder of the Triton X-100 molecules is likely randomly adsorbed onto the MWCNT surface. Infrared spectral analysis suggests that the methylene groups of the polyoxyethylene (aliphatic ether) chains of the residual Triton X-100 molecules are interacting with the MWCNTs. © 2014 Springer Science+Business Media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular dynamics simulation was employed to study the atomic interactions in titanium carbides and iron matrix containing carbon and titanium, which are significant for understanding the formation of titanium carbide cluster during precipitate process. The atoms trajectory and diffusion coefficients of carbon in titanium carbide were analyzed to provide a vacancy-exchanging mechanism and clarify the carbon concentration dependence of carbon diffusion in titanium carbide. The dependence of the formation of titanium carbide cluster in iron matrix on carbon was determined from the study of atoms diffusivity, cluster formation and formation energy of titanium carbide cluster. The simulation results provided insight into the carbon diffusion process and improved the understanding of the formation of titanium carbide cluster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Atomistic simulations were used to investigate the evolution process of titanium carbide clusters to mature precipitates in ferrite. The typical kinetic of carbide cluster growth was studied in detail through analyzing the atomic interactions of a carbide cluster with scattered carbon atoms. The driving force required for cluster growth was calculated along with the atomic diffusivity in the iron matrix, exploring the change in response as two main growth steps. The growth kinetic improved the understanding of precipitate evolution at the atomic level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work has investigated the evolution of microbands (MBs) and their interaction with strain-induced NbC precipitates during uniaxial compression of a model austenitic Fe-30Ni-Nb steel at 925 °C. The (1 1 0) fibre grains, both without and with copious amounts of precipitates, contained up to large strains crystallographic MBs aligned close to the highly stressed {1 1 1} slip planes having large Schmid factors. The MBs thus maintained their crystallographic character during straining, through continuously rearranging themselves, and did not follow the macroscopically imposed rigid body rotation. During double-pass deformation, fine NbC particles formed at short inter-pass holding remained strongly pinned at small reloading strains and appeared to be dragged by rearranging MB walls. With increasing reloading strain, the fine precipitates became progressively released from the above walls. During reloading after increased holding time, the coarsened particles tended with their increased size to become increasingly detached from the MB walls already at a small strain. The precipitate-free MB wall segments rearranged during straining to maintain their crystallographic alignment, while the detached precipitates followed the sample shape change and rotated towards the compression plane. The MB wall rearrangement generally occurred through cooperative migration of the corresponding dislocation networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 The formation of alloy carbide cluster in ferrite was investigated via molecular dynamics simulation, which disclosed the cluster property and formation mechanism. These together provided a better fundamental understanding of the cluster formation and firm information for the evolution of cluster and precipitate in high-strength low-alloy steel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, the effect of precipitate characteristics on {101-2} extension twinning have been studied in a Z6 magnesium alloy. A strongly textured Z6 alloy plate was mechanically tested in twinning dominated orientation in solution treated and aged states. Optical microscopy, transmission electron microscopy (TEM) and visco-plastic self consistent (VPSC) modelling are used to examine the effect of precipitate characteristics on twinning. The yield stress was observed to increase by ~80. MPa during ageing and it was estimated that CRSS for twinning increased by ~29. MPa based on VPSC simulations. The increment of twin system strengthening can be attributed to back stress generated by elastically deforming particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Infectious pathogens figure prominently among those factors threatening marine wildlife. Mass mortality events caused by pathogens can fundamentally alter the structure of wild fish stocks and depress recruitment rates and yield. In the most severe instances, this can precipitate stock collapses resulting in dramatic economic losses to once valuable commercial fisheries. An outbreak of a herpes-like virus among commercially fished abalone populations in the south-west fishery of Victoria, Australia, during 2006-2007, has been associated with high mortality rates among all cohorts. Long-term records from fishery-independent surveys of blacklip abalone Haliotis rubra (Leach) enabled abundance from pre- and post-viral periods to be analysed to estimate stock density and biomass. The spatial distribution of abundance in relation to physical habitat variables derived from high-resolution bathymetric LiDAR data was investigated. Significant differences were observed in both measures between pre- and post-viral periods. Although there was some limited evidence of gradual stock improvement in recent years, disease-affected reefs have remained below productivity rates prior to the disease outbreak suggesting a reduction in larval availability or settlement success. This was corroborated by trends in sublegal sized blacklip abalone abundance that has yet to show substantial recovery post-disease. Abundance data were modelled as a function of habitat variables using a generalised additive model (GAM) and indicated that high abundance was associated with complex reef structures of coastal waters (<15 m). This study highlights the importance of long-term surveys to understand abalone recovery following mass mortality and the links between stock abundance and seafloor variability.