892 resultados para Oral glucose tolerance test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors report a case of a male patient from Bacabal, MA with diffuse cutaneous leishmaniasis (DCL), for at least nine years, with 168 lesions on his body. These were tumour-like nodules with some ulceratmi. He usedpentavalent antimonial (glucantime®) and an association of gamma interferon plus glucantime with improvement of the lesions but relapsed later. Recently, pentamidine isethionate (pentacarinat®) was given a dosage of 4mg/kg/weight/day on alternate days for 20 applications. After 3 months a similar course of 10 application was given 2 times. Later he developed diabetic signs with weight loss of 10kg, polydypsia, polyuria and xerostomia. The lower limbs lesions showed signs of activity. Blood glucose levels normalised and remain like this at moment. Attention is drawn to the fact that pentamidine isethionate should be used as a therapy option with care, obeyng rigorous laboratory controls including a glucose tolerance test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neonatal diabetes mellitus can be transient or permanent. The severe form of permanent neonatal diabetes mellitus can be associated with pancreas agenesis. Normal pancreas development is controlled by a cascade of transcription factors, where insulin promoter factor 1 (IPF1) plays a crucial role. Here, we describe two novel mutations in the IPF1 gene leading to pancreas agenesis. Direct sequence analysis of exons 1 and 2 of the IPF1 gene revealed two point mutations within the homeobox in exon 2. Genetic analysis of the parents showed that each mutation was inherited from one parent. Mutations localized in helices 1 and 2, respectively, of the homeodomain, decreased the protein half-life significantly, leading to intracellular IPF1 levels of 36% and 27% of wild-type levels. Both mutant forms of IPF1 were normally translocated to the nucleus, and their DNA binding activity on different known target promoters was similar to that of the wild-type protein. However, transcriptional activity of both mutant IPF1 proteins, alone or in combination with HNF3 beta/Foxa2, Pbx1, or the heterodimer E47-beta 2 was reduced, findings accounted for by decreased IPF1 steady state levels and not by impaired protein-protein interactions. We conclude that the IPF1 level is critical for human pancreas formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C57BL/6J mice were fed a high-fat, carbohydrate-free diet (HFD) for 9 mo. Approximately 50% of the mice became obese and diabetic (ObD), approximately 10% lean and diabetic (LD), approximately 10% lean and nondiabetic (LnD), and approximately 30% displayed intermediate phenotype. All of the HFD mice were insulin resistant. In the fasted state, whole body glucose clearance was reduced in ObD mice, unchanged in the LD mice, and increased in the LnD mice compared with the normal-chow mice. Because fasted ObD mice were hyperinsulinemic and the lean mice slightly insulinopenic, there was no correlation between insulin levels and increased glucose utilization. In vivo, tissue glucose uptake assessed by 2-[(14)C]deoxyglucose accumulation was reduced in most muscles in the ObD mice but increased in the LnD mice compared with the values of the control mice. In the LD mice, the glucose uptake rates were reduced in extensor digitorum longus (EDL) and total hindlimb but increased in soleus, diaphragm, and heart. When assessed in vitro, glucose utilization rates in the absence and presence of insulin were similar in diaphragm, soleus, and EDL muscles isolated from all groups of mice. Thus, in genetically homogenous mice, HFD feeding lead to different metabolic adaptations. Whereas all of the mice became insulin resistant, this was associated, in obese mice, with decreased glucose clearance and hyperinsulinemia and, in lean mice, with increased glucose clearance in the presence of mild insulinopenia. Therefore, increased glucose clearance in lean mice could not be explained by increased insulin level, indicating that other in vivo mechanisms are triggered to control muscle glucose utilization. These adaptive mechanisms could participate in the protection against development of obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early revascularization of pancreatic islet cells after transplantation is crucial for engraftment, and it has been suggested that vascular endothelial growth factor-A (VEGF-A) plays a significant role in this process. Although VEGF gene therapy can improve angiogenesis, uncontrolled VEGF secretion can lead to vascular tumor formation. Here we have explored the role of temporal VEGF expression, controlled by a tetracycline (TC)-regulated promoter, on revascularization and engraftment of genetically modified beta cells following transplantation. To this end, we modified the CDM3D beta cell line using a lentiviral vector to promote secretion of VEGF-A either in a TC-regulated (TET cells) or a constitutive (PGK cells) manner. VEGF secretion, angiogenesis, cell proliferation, and stimulated insulin secretion were assessed in vitro. VEGF secretion was increased in TET and PGK cells, and VEGF delivery resulted in angiogenesis, whereas addition of TC inhibited these processes. Insulin secretion by the three cell types was similar. We used a syngeneic mouse model of transplantation to assess the effects of this controlled VEGF expression in vivo. Time to normoglycemia, intraperitoneal glucose tolerance test, graft vascular density, and cellular mass were evaluated. Increased expression of VEGF resulted in significantly better revascularization and engraftment after transplantation when compared to control cells. In vivo, there was a significant increase in vascular density in grafted TET and PGK cells versus control cells. Moreover, the time for diabetic mice to return to normoglycemia and the stimulated plasma glucose clearance were also significantly accelerated in mice transplanted with TET and PGK cells when compared to control cells. VEGF was only needed during the first 2-3 weeks after transplantation; when removed, normoglycemia and graft vascularization were maintained. TC-treated mice grafted with TC-treated cells failed to restore normoglycemia. This approach allowed us to switch off VEGF secretion when the desired effects had been achieved. TC-regulated temporal expression of VEGF using a gene therapy approach presents a novel way to improve early revascularization and engraftment after islet cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glitazones are efficient insulin sensitizers that blunt the effects of angiotensin II (ANG II) in the rat. Sodium chloride is another important modulator of the systemic and renal effects of ANG II. Whether glitazones interfere with the interaction between sodium and the response to ANG II is not known. Therefore, we investigated the effects of pioglitazone on the relationship between sodium and the systemic and renal effects of ANG II in rats. Pioglitazone, or vehicle, was administered for 4 wk to 8-wk-old obese Zucker rats. Animals were fed a normal-sodium (NS) or a high-sodium (HS) diet. Intravenous glucose tolerance tests, systemic and renal hemodynamic responses to ANG II, and the renal ANG II binding and expression of ANG II type 1 (AT(1)) receptors were measured. The results of our study were that food intake and body weight increased, whereas blood pressure, heart rate, filtration fraction, and insulin levels decreased significantly with pioglitazone in obese rats on both diets. Pioglitazone blunted the systemic response to ANG II and abolished the increased responsiveness to ANG II induced by a HS diet. Pioglitazone modified the renal hemodynamic response to changes in salt intake while maintaining a lower filtration fraction with ANG II perfusion. These effects were associated with a decrease in the number and expression of the AT(1) receptor in the kidney. In conclusion, these data demonstrate that the peroxisome proliferator-activated receptor-gamma agonist pioglitazone modifies the physiological relationship between sodium chloride and the response to ANG II in insulin-resistant rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: To investigate the relationships between gestational diabetes mellitus (GDM) and the metabolic syndrome (MS), as it was suggested that insulin resistance was the hallmark of both conditions. To analyse post-partum screening in order to identify risk factors for the subsequent development of type 2 diabetes mellitus (DM). METHODS: A retrospective analysis of all singleton pregnancies diagnosed with GDM at the Lausanne University Hospital for 3 consecutive years. Pre-pregnancy obesity, hypertension and dyslipidaemia were recorded as constituents of the MS. RESULTS: For 5788 deliveries, 159 women (2.7%) with GDM were identified. Constituents of the MS were present before GDM pregnancy in 26% (n = 37/144): 84% (n = 31/37) were obese, 38% (n = 14/37) had hypertension and 22% (n = 8/37) had dyslipidaemia. Gestational hypertension was associated with obesity (OR = 3.2, P = 0.02) and dyslipidaemia (OR = 5.4, P=0.002). Seventy-four women (47%) returned for post-partum OGTT, which was abnormal in 20 women (27%): 11% (n = 8) had type 2 diabetes and 16% (n = 12) had impaired glucose tolerance. Independent predictors of abnormal glucose tolerance in the post-partum were: having > 2 abnormal values on the diagnostic OGTT during pregnancy and presenting MS constituents (OR = 5.2, CI 1.8-23.2 and OR = 5.3, CI 1.3-22.2). CONCLUSIONS: In one fourth of GDM pregnancies, metabolic abnormalities precede the appearance of glucose intolerance. These women have a high risk of developing the MS and type 2 diabetes in later years. Where GDM screening is not universal, practitioners should be aware of those metabolic risks in every pregnant woman presenting with obesity, hypertension or dyslipidaemia, in order to achieve better diagnosis and especially better post-partum follow-up and treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-37) (GLP-1) is the most potent insulinotropic hormone characterized thus far. Because its activity is preserved in non-insulin-dependent diabetes mellitus (NIDDM) patients, it is considered a potential new drug for the treatment of this disease. One limitation in its therapeutic use is a short half-life in vivo (5 minutes), due in part to a fast degradation by the endoprotease dipeptidylpeptidase IV (DPPIV). Recently, it was reported that GLP-1 became resistant to DPPIV when the alanine residue at position 8 was replaced by a glycine (GLP-1-Gly8). We report here that this change slightly decreased the affinity of the peptide for its receptor (IC50, 0.41 +/- 0.14 and 1.39 +/- 0.61 nmol/L for GLP-1 and GLP-1-Gly8, respectively) but did not change the efficiency to stimulate accumulation of intracellular cyclic adenosine monophosphate (cAMP) (EC50, 0.25 +/- 0.05 and 0.36 +/- 0.06 nmol/L for GLP-1 and GLP-1-Gly8, respectively). Second, we demonstrate for the first time that this mutant has an improved insulinotropic activity compared with the wild-type peptide when tested in vivo in an animal model of diabetes. A single injection of 0.1 nmol GLP-1-Gly8 in diabetic mice fed a high-fat diet can correct fasting hyperglycemia and glucose intolerance for several hours, whereas the activity of 1 nmol GLP-1 vanishes a few minutes after injection. These actions were correlated with increased insulin and decreased glucagon levels. Interestingly, normoglycemia was maintained over a period that was longer than the predicted peptide half-life, suggesting a yet undescribed long-term effect of GLP-1-Gly8. GLP-1-Gly8 thus has a markedly improved therapeutic potential compared with GLP-1, since it can be used at much lower doses and with a more flexible schedule of administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Administration of 13-cis retinoic acid (isotretinoin) for acne is occasionally accompanied by hyperlipidemia. It is not known why some persons develop this side effect. OBJECTIVE: To determine whether isotretinoin triggers a familial susceptibility to hyperlipidemia and the metabolic syndrome. DESIGN: Cross-sectional comparison. SETTING: University hospital in Lausanne, Switzerland. PARTICIPANTS: 102 persons in whom triglyceride levels increased at least 1.0 mmol/L (> or =89 mg/dL) (hyperresponders) and 100 persons in whom triglyceride levels changed 0.1 mmol/L (< or =9 mg/dL) or less (nonresponders) during isotretinoin therapy for acne. Parents of 71 hyperresponders and 60 nonresponders were also evaluated. MEASUREMENTS: Waist-to-hip ratio; fasting glucose, insulin, and lipid levels; and apoE genotype. RESULTS: Hyperresponders and nonresponders had similar pretreatment body weight and plasma lipid levels. When reevaluated approximately 4 years after completion of isotretinoin therapy, hyperresponders were more likely to have hypertriglyceridemia (triglyceride level > 2.0 mmol/L [>177 mg/dL]; odds ratio [OR], 4.8 [95% CI, 1.6 to 13.8]), hypercholesterolemia (cholesterol level > 6.5 mmol/L [>252 mg/dL]; OR, 9.1 [CI, 1.9 to 43]), truncal obesity (waist-to-hip ratio > 0.90 [OR, 11.0 (CI, 2.0 to 59]), and hyperinsulinemia (insulin-glucose ratio > 7.2; OR, 3.0 [CI, 1.6 to 5.7]). In addition, more hyperresponders had at least one parent with hypertriglyceridemia (OR, 2.6 [CI, 1.2 to 5.7]) or a ratio of total to high-density lipoprotein cholesterol that exceeded 4.0 (OR, 3.5 [CI, 1.5 to 8.0]). Lipid response to isotretinoin was closely associated with the apoE gene. CONCLUSION: Persons who develop hypertriglyceridemia during isotretinoin therapy for acne, as well as their parents, are at increased risk for future hyperlipidemia and the metabolic syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of progesterone (P4) on fructose rich diet (FRD) intake-induced metabolic, endocrine and parametrial adipose tissue (PMAT) dysfunctions was studied in the adult female rat. Sixty day-old rats were i.m. treated with oil alone (control, CT) or containing P4 (12 mg/kg). Rats ate Purina chow-diet ad libitum throughout the entire experiment and, between 100 and 120 days of age drank ad libitum tap water alone (normal diet; CT-ND and P4-ND) or containing fructose (10% w/v; CT-FRD and P4-FRD). At age 120 days, animals were subjected to a glucose tolerance test or decapitated. Plasma concentrations of various biomarkers and PMAT gene abundance were monitored. P4-ND (vs. CT-ND) rats showed elevated circulating levels of lipids. CT-FRD rats displayed high (vs. CT-ND) plasma concentrations of lipids, leptin, adiponectin and plasminogen activator inhibitor-1 (PAI-1). Lipidemia and adiponectinemia were high (vs. P4-ND) in P4-FRD rats. Although P4 failed to prevent FRD-induced hyperleptinemia, it was fully protective on FRD-enhanced plasma PAI-1 levels. PMAT leptin and adiponectin mRNAs were high in CT-FRD and P4-FRD rats. While FRD enhanced PMAT PAI-1 mRNA abundance in CT rats, this effect was absent in P4 rats. Our study supports that a preceding P4-enriched milieu prevented the enhanced prothrombotic risk induced by FRD-elicited high PAI-1 production.