991 resultados para Numerical scheme
Resumo:
Following the approach developed for rods in Part 1 of this paper (Pimenta et al. in Comput. Mech. 42:715-732, 2008), this work presents a fully conserving algorithm for the integration of the equations of motion in nonlinear shell dynamics. We begin with a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, allowing for an extremely simple update of the rotational variables within the scheme. The weak form is constructed via non-orthogonal projection, the time-collocation of which ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that general hyperelastic materials (and not only materials with quadratic potentials) are permitted in a totally consistent way. Spatial discretization is performed using the finite element method and the robust performance of the scheme is demonstrated by means of numerical examples.
Resumo:
A fully conserving algorithm is developed in this paper for the integration of the equations of motion in nonlinear rod dynamics. The starting point is a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, which results in an extremely simple update of the rotational variables. The weak form is constructed with a non-orthogonal projection corresponding to the application of the virtual power theorem. Together with an appropriate time-collocation, it ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that nonlinear hyperelastic materials (and not only materials with quadratic potentials) are permitted without any prejudice on the conservation properties. Spatial discretization is performed via the finite element method and the performance of the scheme is assessed by means of several numerical simulations.
Resumo:
The objective of the present work is to propose a numerical and statistical approach, using computational fluid dynamics, for the study of the atmospheric pollutant dispersion. Modifications in the standard k-epsilon turbulence model and additional equations for the calculation of the variance of concentration are introduced to enhance the prediction of the flow field and scalar quantities. The flow field, the mean concentration and the variance of a flow over a two-dimensional triangular hill, with a finite-size point pollutant source, are calculated by a finite volume code and compared with published experimental results. A modified low Reynolds k-epsilon turbulence model was employed in this work, using the constant of the k-epsilon model C(mu)=0.03 to take into account the inactive atmospheric turbulence. The numerical results for the velocity profiles and the position of the reattachment point are in good agreement with the experimental results. The results for the mean and the variance of the concentration are also in good agreement with experimental results from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.
Resumo:
This paper presents first material tests on HDPE and PVC, and subsequently impact tests on plates made of the same materials. Finally, numerical simulations of the plate impact tests are compared with the experimental results. A rather comprehensive series of mechanical material tests were performed to disclose the behaviour of PVC and HDPE in tension and compression. Quasi-static tests were carried out at three rates in compression and two in tension. Digital image correlation. DIC, was used to measure the in-plane strains, revealing true stress-strain curves and allowing to analyze strain-rate sensitivity and isotropy of Poisson`s ratio. In addition, dynamic compression tests were carried out in a split-Hopkinson pressure bar. Quasi-static and dynamic tests were also performed on clamped plates made of the same PVC and HDPE materials, using an optical technique to measure the full-field out-of-plane deformations. These tests, together with the material data, were used for comparative purposes of a finite element analysis. A reasonable agreement between experimental and numerical results was achieved. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A key issue in the design of tyres is their capability to sustain intense impact loads. Hence, the development of a reliable experimental data basis is important, against which numerical models can be compared. Experimental data on tyre impact in the open literature is somewhat rare. In this article, a specially design rig was developed for tyre impact tests. It holds the test piece in a given position, allowing a drop mass with a round indenter to hit pressurised tyres with different impact energies. A high-speed camera and a laser velocimeter were used to track the impact event. From the laser measurement it was possible to obtain the impact force and the local indentation. A finite element study was then conducted using material properties from the open literature. By comparing the experimental measurements with the numerical results, it became evident that the model was capable of predicting the major features of the impact of a mass on a tyre. This model is therefore of value for the assessment of the performance of a tyre in extreme cases of mass impact. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The ability to control both the minimum size of holes and the minimum size of structural members are essential requirements in the topology optimization design process for manufacturing. This paper addresses both requirements by means of a unified approach involving mesh-independent projection techniques. An inverse projection is developed to control the minimum hole size while a standard direct projection scheme is used to control the minimum length of structural members. In addition, a heuristic scheme combining both contrasting requirements simultaneously is discussed. Two topology optimization implementations are contributed: one in which the projection (either inverse or direct) is used at each iteration; and the other in which a two-phase scheme is explored. In the first phase, the compliance minimization is carried out without any projection until convergence. In the second phase, the chosen projection scheme is applied iteratively until a solution is obtained while satisfying either the minimum member size or minimum hole size. Examples demonstrate the various features of the projection-based techniques presented.
Resumo:
The time varying intensity character of a load applied to a structure poses many difficulties in analysis. A remedy to this situation is to substitute a complex pulse shape by a rectangular equivalent one. It has been shown by others that this procedure works well for perfectly plastic elementary structures. This paper applies the concept of equivalent pulse to more complex structures. Special attention is given to the material behavior, which is allowed to be strain rate and strain hardening sensitive. Thanks to the explicit finite element solution, it is shown in this article that blast loads applied to complex structures made of real materials can be substituted by equivalent rectangular loads with both responses being practically the same. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material`s strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study examines the applicability of a micromechanics approach based upon the computational cell methodology incorporating the Gurson-Tvergaard (GT) model and the CTOA criterion to describe ductile crack extension of longitudinal crack-like defects in high pressure pipeline steels. A central focus is to gain additional insight into the effectiveness and limitations of both approaches to describe crack growth response and to predict the burst pressure for the tested cracked pipes. A verification study conducted on burst testing of large-diameter, precracked pipe specimens with varying crack depth to thickness ratio (a/t) shows the potential predictive capability of the cell approach even though both the CT model and the CTOA criterion appear to depend on defect geometry. Overall, the results presented here lend additional support for further developments in the cell methodology as a valid engineering tool for integrity assessments of pipelines with axial defects. (C) 2011 Elsevier Ltd. All rights reserved,
Resumo:
Dynamic experiments in a nonadiabatic packed bed were carried out to evaluate the response to disturbances in wall temperature and inlet airflow rate and temperature. A two-dimensional, pseudo-homogeneous, axially dispersed plug-flow model was numerically solved and used to interpret the results. The model parameters were fitted in distinct stages: effective radial thermal conductivity (K (r)) and wall heat transfer coefficient (h (w)) were estimated from steady-state data and the characteristic packed bed time constant (tau) from transient data. A new correlation for the K (r) in packed beds of cylindrical particles was proposed. It was experimentally proved that temperature measurements using radially inserted thermocouples and a ring-shaped sensor were not distorted by heat conduction across the thermocouple or by the thermal inertia effect of the temperature sensors.
Resumo:
A procedure is proposed for the determination of the residence time distribution (RTD) of curved tubes taking into account the non-ideal detection of the tracer. The procedure was applied to two holding tubes used for milk pasteurization in laboratory scale. Experimental data was obtained using an ionic tracer. The signal distortion caused by the detection system was considerable because of the short residence time. Four RTD models, namely axial dispersion, extended tanks in series, generalized convection and PER + CSTR association, were adjusted after convolution with the E-curve of the detection system. The generalized convection model provided the best fit because it could better represent the tail on the tracer concentration curve that is Caused by the laminar velocity profile and the recirculation regions. Adjusted model parameters were well cot-related with the now rate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We use networks composed of three phase-locked loops (PLLs), where one of them is the master, for recognizing noisy images. The values of the coupling weights among the PLLs control the noise level which does not affect the successful identification of the input image. Analytical results and numerical tests are presented concerning the scheme performance. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, a series of two-dimensional plane-strain finite element analyses was conducted to further understand the stress distribution during tensile tests on coated systems. Besides the film and the substrate, the finite element model also considered a number of cracks perpendicular to the film/substrate interface. Different from analyses commonly found in the literature, the mechanical behavior of both film and substrate was considered elastic-perfectly plastic in part of the analyses. Together with the film yield stress and the number of film cracks, other variables that were considered were crack tip geometry, the distance between two consecutive cracks and the presence of an interlayer. The analysis was based on the normal stresses parallel to the loading axis (sigma(xx)), which are responsible for cohesive failures that are observed in the film during this type of test. Results indicated that some configurations studied in this work have significantly reduced the value of sigma(xx) at the film/substrate interface and close to the pre-defined crack tips. Furthermore, in all the cases studied the values of sigma(xx) were systematically larger at the film/substrate interface than at the film surface. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.