916 resultados para Numerical and experimental researches
Resumo:
We discuss the long-range interactions that arise in homogeneous turbulence as a consequence of the Biot-Savart law. We note that, somewhat surprisingly, these long-range correlations are very weak in decaying, isotropic turbulence, and we argue that this should also be true for magnetohydrodynamic, rotating and stratified turbulence. If this is indeed the case, it is possible to make explicit predictions for the rate of decay of energy in these anisotropic systems, and it turns out that these predictions are consistent with the available numerical and experimental evidence.
Resumo:
The inherent interest on the origin of genetic novelties can be traced back to Darwin. But it was not until recently that we were allowed to investigate the fundamental process of origin of new genes by the studies on newly evolved Young genes. Two indisp
Resumo:
The Statistics Anxiety Rating Scale (STARS) was adapted into German to examine its psychometric properties (n = 400). Two validation studies (n = 66, n = 96) were conducted to examine its criterion-related validity. The psychometric properties of the questionnaire were very similar to those previously reported for the original English version in various countries and other language versions. Confirmatory factor analysis indicated 2 second-order factors: One was more closely related to anxiety and the other was more closely related to negative attitudes toward statistics. Predictive validity of the STARS was shown both in an experimental exam-like situation in the laboratory and during a real examination situation. Taken together, the findings indicate that statistics anxiety as assessed by the STARS is a useful construct that is more than just an expression of a more general disposition to anxiety.
Resumo:
Analytical methods provide a global context from which to understand the dynamics of stone spires, but computational and experimental methods are useful to predict more specific behavior of multiple block structures. In this paper, the spire of St. Mary Magdalene church in Waltham-on-the-Wolds, UK, which was damaged in the 2008 Lincolnshire Earthquake, is used as a case study. Both a physical model and a discrete element computational model of the spire were created and used to investigate collapse under constant horizontal acceleration, impulse base motion, and earthquake ground motion. Results indicate that the global behavior compares well with analytical modeling, but local block displacements evident in DEM and experimental results also reduce the stability of the structure. In this context, the observed damage to St. Mary Magdalene church is evaluated and discussed. © 2012 Elsevier Ltd.
Resumo:
The biomechanisms that govern the response of chondrocytes to mechanical stimuli are poorly understood. In this study, a series of in vitro tests are performed, in which single chondrocytes are subjected to shear deformation by a horizontally moving probe. Dramatically different probe force-indentation curves are obtained for untreated cells and for cells in which the actin cytoskeleton has been disrupted. Untreated cells exhibit a rapid increase in force upon probe contact followed by yielding behaviour. Cells in which the contractile actin cytoskeleton was removed exhibit a linear force-indentation response. In order to investigate the mechanisms underlying this behaviour, a three-dimensional active modelling framework incorporating stress fibre (SF) remodelling and contractility is used to simulate the in vitro tests. Simulations reveal that the characteristic force-indentation curve observed for untreated chondrocytes occurs as a result of two factors: (i) yielding of SFs due to stretching of the cytoplasm near the probe and (ii) dissociation of SFs due to reduced cytoplasm tension at the front of the cell. In contrast, a passive hyperelastic model predicts a linear force-indentation curve similar to that observed for cells in which the actin cytoskeleton has been disrupted. This combined modelling-experimental study offers a novel insight into the role of the active contractility and remodelling of the actin cytoskeleton in the response of chondrocytes to mechanical loading.
Resumo:
This paper begins with introducing the winding techniques of two superconducting double-pancake coils wound using 2G coated conductors. These winding techniques are able to guarantee a good performance for the superconducting coils. Then the coil critical currents were measured and compared with a simulation model. The results were consistent. Finally the coil AC losses were measured using an experimental circuit including a compensation coil. The simulation results are close to the experiment results. © 2010 IEEE.
Resumo:
Application of High Temperature Superconducting (HTS) has been increasingly popular since the new superconducting materials were discovered. This paper presents a new high-precision digital lock-in measurement technique which is used for measuring critical current and AC loss of the 2nd Generation HTS tape. Using a lock-in amplifier and nano-voltage meter, we can resolve signals at nano-volt level, while using a specially designed compensation coil we can cancel out inductive by adjusting the coil inductance. Furthermore, a finer correction for the inductive component can be achieved by adjusting the reference phase of the lock-in amplifier. The critical current and AC loss measurement algorithms and hardware layout are described and analyzed, and results for both numerical and experimental data under varieties of frequencies are presented. © 2008 SICE.
Resumo:
This paper presents a comparative study of ac magnetization losses in two types of 2 G HTS racetrack coils. The magnetic substrate made by RABiTS is the main difference between the two types, because ferromagnetic loss caused by magnetic substrate is accounted into the total ac losses. IBAD and RABiTS tapes were successfully wound into racetrack shape with identical geometry. The measurements were carried out by using electromagnetic method with pick-up coils under a sinusoidally varying external magnetic field, with amplitudes up to 27 mT, ranging from 10 Hz to 100 Hz at a temperature of 77 K. The field was oriented perpendicularly to the surface of the tapes. Experimental measurements were validated by applying theoretical models and the results showed that the magnetization loss in the MAG RABiTS coil is always higher than that in the NON MAG coil due to the presence of the magnetic substrate, which increases the magnetic field penetration into the coil and causes higher magnetic flux density within the penetrated region. © 2002-2011 IEEE.