997 resultados para Nonlinear Eigenvalue Problems
Resumo:
In this work, we are interested in the dynamic behavior of a parabolic problem with nonlinear boundary conditions and delay in the boundary. We construct a reaction-diffusion problem with delay in the interior, where the reaction term is concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary, as a parameter epsilon goes to zero. We analyze the limit of the solutions of this concentrated problem and prove that these solutions converge in certain continuous function spaces to the unique solution of the parabolic problem with delay in the boundary. This convergence result allows us to approximate the solution of equations with delay acting on the boundary by solutions of equations with delay acting in the interior and it may contribute to analyze the dynamic behavior of delay equations when the delay is at the boundary. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Turbulence is one of the key problems of classical physics, and it has been the object of intense research in the last decades in a large spectrum of problems involving fluids, plasmas, and waves. In order to review some advances in theoretical and experimental investigations on turbulence a mini-symposium on this subject was organized in the Dynamics Days South America 2010 Conference. The main goal of this mini-symposium was to present recent developments in both fundamental aspects and dynamical analysis of turbulence in nonlinear waves and fusion plasmas. In this paper we present a summary of the works presented at this mini-symposium. Among the questions to be addressed were the onset and control of turbulence and spatio-temporal chaos. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.
Resumo:
In this paper, we investigate the behavior of a family of steady-state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a e-neighborhood of a portion G of the boundary. We assume that this e-neighborhood shrinks to G as the small parameter e goes to zero. Also, we suppose the upper boundary of this e-strip presents a highly oscillatory behavior. Our main goal here was to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on G, which depends on the oscillating neighborhood. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this work the differentiability of the principal eigenvalue lambda = lambda(1)(Gamma) to the localized Steklov problem -Delta u + qu = 0 in Omega, partial derivative u/partial derivative nu = lambda chi(Gamma)(x)u on partial derivative Omega, where Gamma subset of partial derivative Omega is a smooth subdomain of partial derivative Omega and chi(Gamma) is its characteristic function relative to partial derivative Omega, is shown. As a key point, the flux subdomain Gamma is regarded here as the variable with respect to which such differentiation is performed. An explicit formula for the derivative of lambda(1) (Gamma) with respect to Gamma is obtained. The lack of regularity up to the boundary of the first derivative of the principal eigenfunctions is a further intrinsic feature of the problem. Therefore, the whole analysis must be done in the weak sense of H(1)(Omega). The study is of interest in mathematical models in morphogenesis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A transmission problem involving two Euler-Bernoulli equations modeling the vibrations of a composite beam is studied. Assuming that the beam is clamped at one extremity, and resting on an elastic bearing at the other extremity, the existence of a unique global solution and decay rates of the energy are obtained by adding just one damping device at the end containing the bearing mechanism.
Resumo:
[EN] We establish the existence and uniqueness of a positive and nondecreasing solution to a singular boundary value problem of a class of nonlinear fractional differential equation. Our analysis relies on a fixed point theorem in partially ordered sets.
Resumo:
In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.
Resumo:
In this thesis, the industrial application of control a Permanent Magnet Synchronous Motor in a sensorless configuration has been faced, and in particular the task of estimating the unknown “parameters” necessary for the application of standard motor control algorithms. In literature several techniques have been proposed to cope with this task, among them the technique based on model-based nonlinear observer has been followed. The hypothesis of neglecting the mechanical dynamics from the motor model has been applied due to practical and physical considerations, therefore only the electromagnetic dynamics has been used for the observers design. First observer proposed is based on stator currents and Stator Flux dynamics described in a generic rotating reference frame. Stator flux dynamics are known apart their initial conditions which are estimated, with speed that is also unknown, through the use of the Adaptive Theory. The second observer proposed is based on stator currents and Rotor Flux dynamics described in a self-aligning reference frame. Rotor flux dynamics are described in the stationary reference frame exploiting polar coordinates instead of classical Cartesian coordinates, by means the estimation of amplitude and speed of the rotor flux. The stability proof is derived in a Singular Perturbation Framework, which allows for the use the current estimation errors as a measure of rotor flux estimation errors. The stability properties has been derived using a specific theory for systems with time scale separation, which guarantees a semi-global practical stability. For the two observer ideal simulations and real simulations have been performed to prove the effectiveness of the observers proposed, real simulations on which the effects of the Inverter nonlinearities have been introduced, showing the already known problems of the model-based observers for low speed applications.
Resumo:
This Ph.D thesis focuses on iterative regularization methods for regularizing linear and nonlinear ill-posed problems. Regarding linear problems, three new stopping rules for the Conjugate Gradient method applied to the normal equations are proposed and tested in many numerical simulations, including some tomographic images reconstruction problems. Regarding nonlinear problems, convergence and convergence rate results are provided for a Newton-type method with a modified version of Landweber iteration as an inner iteration in a Banach space setting.
Resumo:
Semiconductors technologies are rapidly evolving driven by the need for higher performance demanded by applications. Thanks to the numerous advantages that it offers, gallium nitride (GaN) is quickly becoming the technology of reference in the field of power amplification at high frequency. The RF power density of AlGaN/GaN HEMTs (High Electron Mobility Transistor) is an order of magnitude higher than the one of gallium arsenide (GaAs) transistors. The first demonstration of GaN devices dates back only to 1993. Although over the past few years some commercial products have started to be available, the development of a new technology is a long process. The technology of AlGaN/GaN HEMT is not yet fully mature, some issues related to dispersive phenomena and also to reliability are still present. Dispersive phenomena, also referred as long-term memory effects, have a detrimental impact on RF performances and are due both to the presence of traps in the device structure and to self-heating effects. A better understanding of these problems is needed to further improve the obtainable performances. Moreover, new models of devices that take into consideration these effects are necessary for accurate circuit designs. New characterization techniques are thus needed both to gain insight into these problems and improve the technology and to develop more accurate device models. This thesis presents the research conducted on the development of new charac- terization and modelling methodologies for GaN-based devices and on the use of this technology for high frequency power amplifier applications.
Resumo:
The main objective of this project is to experimentally demonstrate geometrical nonlinear phenomena due to large displacements during resonant vibration of composite materials and to explain the problem associated with fatigue prediction at resonant conditions. Three different composite blades to be tested were designed and manufactured, being their difference in the composite layup (i.e. unidirectional, cross-ply, and angle-ply layups). Manual envelope bagging technique is explained as applied to the actual manufacturing of the components; problems encountered and their solutions are detailed. Forced response tests of the first flexural, first torsional, and second flexural modes were performed by means of a uniquely contactless excitation system which induced vibration by using a pulsed airflow. Vibration intensity was acquired by means of Polytec LDV system. The first flexural mode is found to be completely linear irrespective of the vibration amplitude. The first torsional mode exhibits a general nonlinear softening behaviour which is interestingly coupled with a hardening behaviour for the unidirectional layup. The second flexural mode has a hardening nonlinear behaviour for either the unidirectional and angle-ply blade, whereas it is slightly softening for the cross-ply layup. By using the same equipment as that used for forced response analyses, free decay tests were performed at different airflow intensities. Discrete Fourier Trasform over the entire decay and Sliding DFT were computed so as to visualise the presence of nonlinear superharmonics in the decay signal and when they were damped out from the vibration over the decay time. Linear modes exhibit an exponential decay, while nonlinearities are associated with a dry-friction damping phenomenon which tends to increase with increasing amplitude. Damping ratio is derived from logarithmic decrement for the exponential branch of the decay.
Resumo:
FEAST is a recently developed eigenvalue algorithm which computes selected interior eigenvalues of real symmetric matrices. It uses contour integral resolvent based projections. A weakness is that the existing algorithm relies on accurate reasoned estimates of the number of eigenvalues within the contour. Examining the singular values of the projections on moderately-sized, randomly-generated test problems motivates orthogonalization-based improvements to the algorithm. The singular value distributions provide experimentally robust estimates of the number of eigenvalues within the contour. The algorithm is modified to handle both Hermitian and general complex matrices. The original algorithm (based on circular contours and Gauss-Legendre quadrature) is extended to contours and quadrature schemes that are recursively subdividable. A general complex recursive algorithm is implemented on rectangular and diamond contours. The accuracy of different quadrature schemes for various contours is investigated.
Resumo:
SOMS is a general surrogate-based multistart algorithm, which is used in combination with any local optimizer to find global optima for computationally expensive functions with multiple local minima. SOMS differs from previous multistart methods in that a surrogate approximation is used by the multistart algorithm to help reduce the number of function evaluations necessary to identify the most promising points from which to start each nonlinear programming local search. SOMS’s numerical results are compared with four well-known methods, namely, Multi-Level Single Linkage (MLSL), MATLAB’s MultiStart, MATLAB’s GlobalSearch, and GLOBAL. In addition, we propose a class of wavy test functions that mimic the wavy nature of objective functions arising in many black-box simulations. Extensive comparisons of algorithms on the wavy testfunctions and on earlier standard global-optimization test functions are done for a total of 19 different test problems. The numerical results indicate that SOMS performs favorably in comparison to alternative methods and does especially well on wavy functions when the number of function evaluations allowed is limited.