919 resultados para Naive Bayes classifier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper investigates the feasibility of implementing an intelligent classifier for noise sources in the ocean, with the help of artificial neural networks, using higher order spectral features. Non-linear interactions between the component frequencies of the noise data can give rise to certain phase relations called Quadratic Phase Coupling (QPC), which cannot be characterized by power spectral analysis. However, bispectral analysis, which is a higher order estimation technique, can reveal the presence of such phase couplings and provide a measure to quantify such couplings. A feed forward neural network has been trained and validated with higher order spectral features

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

id 34 additional quiz resource

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XII Jornadas de Investigaci??n en el Aula de Matem??ticas : estad??stica y azar, celebradas en Granada, noviembre y diciembre de 2006. Resumen tomado de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When considering contaminated site ecology and ecological risk assessment a key question is whether organisms that appear unaffected by accumulation of contaminants are tolerant or resistant to those contaminants. A population of Dendrodrilus rubidus Savigny earthworms from the Coniston Copper Mines, an area of former Cu mining, exhibit increased tolerance and accumulation of Cu relative to a nearby non-Cu exposed population. Distribution of total Cu between different body parts (posterior, anterior, body wall) of the two populations was determined after a 14 day exposure to 250 mg Cu kg(-1) in Cu-amended soil. Cu concentrations were greater in Coniston earthworms but relative proportions of Cu in different body parts were the same between populations. Cu speciation was determined using extended X-ray absorption fine structure spectroscopy (EXAFS). Cu was coordinated to 0 atoms in the exposure soil but to S atoms in the earthworms. There was no difference in this speciation between the different earthworm populations. In another experiment earthworms were exposed to a range of Cu concentrations (200-700 mg Cu kg(-1)). Subcellular partitioning of accumulated Cu was determined. Coniston earthworms accumulated more Cu but relative proportions of Cu in the different fractions (cytosol > granular > tissue fragments, cell membranes, and intact cells) were the same between populations. Results suggest that Coniston D. rubidus are able to survive in the Cu-rich Coniston Copper Mines soil through enlargement of the same Cu storage reservoirs that exist in a nearby non-Cu exposed population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationalizing non-participation as a resource deficiency in the household, this paper identifies strategies for milk-market development in the Ethiopian highlands. The additional amounts of covariates required for Positive marketable surplus -'distances-to market'-are computed from a model in which production and sales are correlated; sales are left-censored at some Unobserved thresholds production efficiencies are heterogeneous: and the data are in the form of a panel. Incorporating these features into the modeling exercise ant because they are fundamental to the data-generating environment. There are four reasons. First, because production and sales decisions are enacted within the same household, both decisions are affected by the same exogenous shocks, and production and sales are therefore likely to be correlated. Second. because selling, involves time and time is arguably the most important resource available to a subsistence household, the minimum Sales amount is not zero but, rather, some unobserved threshold that lies beyond zero. Third. the Potential existence of heterogeneous abilities in management, ones that lie latent from the econometrician's perspective, suggest that production efficiencies should be permitted to vary across households. Fourth, we observe a single set of households during multiple visits in a single production year. The results convey clearly that institutional and production) innovations alone are insufficient to encourage participation. Market-precipitating innovation requires complementary inputs, especially improvements in human capital and reductions in risk. Copyright (c) 20 08 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have discovered a novel approach of intrusion detection system using an intelligent data classifier based on a self organizing map (SOM). We have surveyed all other unsupervised intrusion detection methods, different alternative SOM based techniques and KDD winner IDS methods. This paper provides a robust designed and implemented intelligent data classifier technique based on a single large size (30x30) self organizing map (SOM) having the capability to detect all types of attacks given in the DARPA Archive 1999 the lowest false positive rate being 0.04 % and higher detection rate being 99.73% tested using full KDD data sets and 89.54% comparable detection rate and 0.18% lowest false positive rate tested using corrected data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A greedy technique is proposed to construct parsimonious kernel classifiers using the orthogonal forward selection method and boosting based on Fisher ratio for class separability measure. Unlike most kernel classification methods, which restrict kernel means to the training input data and use a fixed common variance for all the kernel terms, the proposed technique can tune both the mean vector and diagonal covariance matrix of individual kernel by incrementally maximizing Fisher ratio for class separability measure. An efficient weighted optimization method is developed based on boosting to append kernels one by one in an orthogonal forward selection procedure. Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to the existing state-of-the-art kernel modeling methods for constructing sparse Gaussian radial basis function network classifiers. that generalize well.