897 resultados para Multiscale entropy
Resumo:
Fractal theory presents a large number of applications to image and signal analysis. Although the fractal dimension can be used as an image object descriptor, a multiscale approach, such as multiscale fractal dimension (MFD), increases the amount of information extracted from an object. MFD provides a curve which describes object complexity along the scale. However, this curve presents much redundant information, which could be discarded without loss in performance. Thus, it is necessary the use of a descriptor technique to analyze this curve and also to reduce the dimensionality of these data by selecting its meaningful descriptors. This paper shows a comparative study among different techniques for MFD descriptors generation. It compares the use of well-known and state-of-the-art descriptors, such as Fourier, Wavelet, Polynomial Approximation (PA), Functional Data Analysis (FDA), Principal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX), kernel PCA, Independent Component Analysis (ICA), geometrical and statistical features. The descriptors are evaluated in a classification experiment using Linear Discriminant Analysis over the descriptors computed from MFD curves from two data sets: generic shapes and rotated fish contours. Results indicate that PCA, FDA, PA and Wavelet Approximation provide the best MFD descriptors for recognition and classification tasks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Prostate cancer is a serious public health problem that affects quality of life and has a significant mortality rate. The aim of the present study was to quantify the fractal dimension and Shannon’s entropy in the histological diagnosis of prostate cancer. Methods: Thirty-four patients with prostate cancer aged 50 to 75 years having been submitted to radical prostatectomy participated in the study. Histological slides of normal (N), hyperplastic (H) and tumor (T) areas of the prostate were digitally photographed with three different magnifications (40x, 100x and 400x) and analyzed. The fractal dimension (FD), Shannon’s entropy (SE) and number of cell nuclei (NCN) in these areas were compared. Results: FD analysis demonstrated the following significant differences between groups: T vs. N and H vs. N groups (p < 0.05) at a magnification of 40x; T vs. N (p < 0.01) at 100x and H vs. N (p < 0.01) at 400x. SE analysis revealed the following significant differences groups: T vs. H and T vs. N (p < 0.05) at 100x; and T vs. H and T vs. N (p < 0.001) at 400x. NCN analysis demonstrated the following significant differences between groups: T vs. H and T vs. N (p < 0.05) at 40x; T vs. H and T vs. N (p < 0.0001) at 100x; and T vs. H and T vs. N (p < 0.01) at 400x. Conclusions: The quantification of the FD and SE, together with the number of cell nuclei, has potential clinical applications in the histological diagnosis of prostate cancer.
Resumo:
This paper presents a comparison of descriptive statistics obtained for brittle structural lineaments extracted manually from LANDSAT images and shaded relief images from SRTM 3 DEM at 1:100, 000 and 1:500, 000 scales. The selected area is located in the southern of Brazil and comprises Precambrian rocks and stratigraphic units of the Paraná Basin. The application of this methodology shows that the visual interpretation depends on the kind of remote sensing image. The resulting descriptive statistics obtained for lineaments extracted from the images do not follow the same pattern according to the scale adopted. The main direction obtained for Proterozoic rocks using both image types at a 1:500, 000 scale are close to NS±10, whereas at a 1:100, 000 scale N45E was obtained for shaded relief images from SRTM 3 DEM and N10W for LANDSAT images. The Paleozoic sediments yielded the best results for the different images and scales (N50W). On the other hand, the Mesozoic igneous rocks showed greatest differences, the shaded relief images from SRTM 3 DEM images highlighting NE structures and the LANDSAT images highlighting NW structures. The accumulated frequency demonstrated high similarity between products for each image type no matter the scale, indicating that they can be used in multiscale studies. Conversely, major differences were found when comparing data obtained using shaded relief images from SRTM 3 DEM and Landsat images at a 1:100, 000 scale.
Resumo:
An out of equilibrium Ising model subjected to an irreversible dynamics is analyzed by means of a stochastic dynamics, on a effort that aims to understand the observed critical behavior as consequence of the intrinsic microscopic characteristics. The study focus on the kinetic phase transitions that take place by assuming a lattice model with inversion symmetry and under the influence of two competing Glauber dynamics, intended to describe the stationary states using the entropy production, which characterize the system behavior and clarifies its reversibility conditions. Thus, it is considered a square lattice formed by two sublattices interconnected, each one of which is in contact with a heat bath at different temperature from the other. Analytical and numerical treatments are faced, using mean-field approximations and Monte Carlo simulations. For the one dimensional model exact results for the entropy production were obtained, though in this case the phase transition that takes place in the two dimensional counterpart is not observed, fact which is in accordance with the behavior shared by lattice models presenting inversion symmetry. Results found for the stationary state show a critical behavior of the same class as the equilibrium Ising model with a phase transition of the second order, which is evidenced by a divergence with an exponent µ ¼ 0:003 of the entropy production derivative.
Resumo:
This work proposes the application of fractal descriptors to the analysis of nanoscale materials under different experimental conditions. We obtain descriptors for images from the sample applying a multiscale transform to the calculation of fractal dimension of a surface map of such image. Particularly, we have used the Bouligand-Minkowski fractal dimension. We applied these descriptors to discriminate between two titanium oxide films prepared under different experimental conditions. Results demonstrate the discrimination power of proposed descriptors in such kind of application.
Resumo:
Biohybrid derivatives of π-conjugated materials are emerging as powerful tools to study biological events through the (opto)electronic variations of the π-conjugated moieties, as well as to direct and govern the self-assembly properties of the organic materials through the organization principles of the bio component. So far, very few examples of thiophene-based biohybrids have been reported. The aim of this Ph. D thesis has been the development of oligothiophene-oligonucleotide hybrid derivatives as tools, on one side, to detect DNA hybridisation events and, on the other, as model compounds to investigate thiophene-nucleobase interactions in the solid state. To obtain oligothiophene bioconjugates with the required high level of purity, we first developed new synthetic ecofriendly protocols for the synthesis of thiophene oligomers. Our innovative heterogeneous Suzuki coupling methodology, carried out in EtOH/water or isopropanol under microwave irradiation, allowed us to obtain alkyl substituted oligothiophenes and thiophene based co-oligomers in high yields and very short reaction times, free from residual metals and with improved film forming properties. These methodologies were subsequently applied in the synthesis of oligothiophene-oligonucleotide conjugates. Oligothiophene-5-labeled deoxyuridines were synthesized and incorporated into 19-meric oligonucletide sequences. We showed that the oligothiophene-labeled oligonucletide sequences obtained can be used as probes to detect a single nucleotide polymorphism (SNP) in complementary DNA target sequences. In fact, all the probes showed marked variations in emission intensity upon hybridization with a complementary target sequence. The observed variations in emitted light were comparable or even superior to those reported in similar studies, showing that the biohybrids can potentially be useful to develop biosensors for the detection of DNA mismatches. Finally, water-soluble, photoluminescent and electroactive dinucleotide-hybrid derivatives of quaterthiophene and quinquethiophene were synthesized. By means of a combination of spectroscopy and microscopy techniques, electrical characterizations, microfluidic measurements and theoretical calculations, we were able to demonstrate that the self-assembly modalities of the biohybrids in thin films are driven by the interplay of intra and intermolecular interactions in which the π-stacking between the oligothiophene and nucleotide bases plays a major role.
Resumo:
Biological processes are very complex mechanisms, most of them being accompanied by or manifested as signals that reflect their essential characteristics and qualities. The development of diagnostic techniques based on signal and image acquisition from the human body is commonly retained as one of the propelling factors in the advancements in medicine and biosciences recorded in the recent past. It is a fact that the instruments used for biological signal and image recording, like any other acquisition system, are affected by non-idealities which, by different degrees, negatively impact on the accuracy of the recording. This work discusses how it is possible to attenuate, and ideally to remove, these effects, with a particular attention toward ultrasound imaging and extracellular recordings. Original algorithms developed during the Ph.D. research activity will be examined and compared to ones in literature tackling the same problems; results will be drawn on the base of comparative tests on both synthetic and in-vivo acquisitions, evaluating standard metrics in the respective field of application. All the developed algorithms share an adaptive approach to signal analysis, meaning that their behavior is not dependent only on designer choices, but driven by input signal characteristics too. Performance comparisons following the state of the art concerning image quality assessment, contrast gain estimation and resolution gain quantification as well as visual inspection highlighted very good results featured by the proposed ultrasound image deconvolution and restoring algorithms: axial resolution up to 5 times better than algorithms in literature are possible. Concerning extracellular recordings, the results of the proposed denoising technique compared to other signal processing algorithms pointed out an improvement of the state of the art of almost 4 dB.
Resumo:
Programa de doctorado, Oceanografía ; 2004-2006
Resumo:
Regenerative medicine claims for a better understanding of the cause-effect relation between cell behaviour and environment signals. The latter encompasses topographical, chemical and mechanical stimuli, electromagnetic fields, gradients of chemo-attractants and haptotaxis. In this perspective, a spatial control of the structures composing the environment is required. In this thesis I describe a novel approach for the multiscale patterning of biocompatible functional materials in order to provide systems able to accurately control cell adhesion and proliferation. The behaviour of different neural cell lines in response to several stimuli, specifically chemical, topographical and electrical gradients is presented. For each of the three kind of signals, I chose properly tailored materials and fabrication and characterization techniques. After a brief introduction on the state of art of nanotechnology, nanofabrication techniques and regenerative medicine in Chapter 1 and a detailed description of the main fabrication and characterization techniques employed in this work in Chapter 2, in Chapter 3 an easy route to obtain accurate control over cell proliferation close to 100% is described (chemical control). In Chapter 4 (topographical control) it is shown how the multiscale patterning of a well-established biocompatible material as titanium dioxide provides a versatile and robust method to study the effect of local topography on cell adhesion and growth. The third signal, viz. electric field, is investigated in Chapter 5 (electrical control), where the very early stages of neural cell adhesion are studied in the presence of modest steady electric fields. In Chapter 6 (appendix) a new patterning technique, called Lithographically Controlled Etching (LCE), is proposed. It is shown how LCE can provide at the same time the micro/nanostructuring and functionalization of a surface with nanosized objects, thus being suitable for applications both in regenerative medicine in biosensing.
Resumo:
In questa tesi abbiamo presentato il calcolo dell’Entropia di Entanglement di un sistema quantistico unidimensionale integrabile la cui rappresentazione statistica é data dal modello RSOS, il cui punto critico é una realizzazione su reticolo di tutti i modelli conformi minimali. Sfruttando l’integrabilitá di questi modelli, abbiamo svolto il calcolo utilizzando la tecnica delle Corner Transfer Matrices (CTM). Il risultato ottenuto si discosta leggermente dalla previsione di J. Cardy e P. Calabrese ricavata utilizzando la teoria dei campi conformi descriventi il punto critico. Questa differenza é stata imputata alla non-unitarietá del modello studiato, in quanto la tecnica CTM studia il ground state, mentre la previsione di Cardy e Calabrese si focalizza sul vuoto conforme del modello: nel caso dei sistemi non-unitari questi due stati non coincidono, ma possono essere visti come eccitazioni l’uno dell’altro. Dato che l’Entanglement é un fenomeno genuinamente quantistico e il modello RSOS descrive un sistema statistico classico bidimensionale, abbiamo proposto una Hamiltoniana quantistica unidimensionale integrabile la cui rappresentazione statistica é data dal modello RSOS.
Resumo:
Network Theory is a prolific and lively field, especially when it approaches Biology. New concepts from this theory find application in areas where extensive datasets are already available for analysis, without the need to invest money to collect them. The only tools that are necessary to accomplish an analysis are easily accessible: a computing machine and a good algorithm. As these two tools progress, thanks to technology advancement and human efforts, wider and wider datasets can be analysed. The aim of this paper is twofold. Firstly, to provide an overview of one of these concepts, which originates at the meeting point between Network Theory and Statistical Mechanics: the entropy of a network ensemble. This quantity has been described from different angles in the literature. Our approach tries to be a synthesis of the different points of view. The second part of the work is devoted to presenting a parallel algorithm that can evaluate this quantity over an extensive dataset. Eventually, the algorithm will also be used to analyse high-throughput data coming from biology.
Resumo:
Scopo di questo lavoro di tesi è lo studio di alcune proprietà delle teorie generali della gravità in relazione alla meccanica e la termodinamica dei buchi neri. In particolare, la trattazione che seguirà ha lo scopo di fornire un percorso autoconsistente che conduca alla nozione di entropia di un orizzonte descritta in termini delle carica di Noether associata all'invarianza del funzionale d'azione, che descrive la teoria gravitazionale in considerazione, per trasformazioni di coordinate generali. Si presterà particolare attenzione ad alcune proprietà geometriche della Lagrangiana, proprietà che sono indipendenti dalla particolare forma della teoria che si sta prendendo in considerazione; trattasi cioè non di proprietà dinamiche, legate cioè alla forma delle equazioni del moto del campo gravitazionale, ma piuttosto caratteristiche proprie di qualunque varietà rappresentante uno spaziotempo curvo. Queste caratteristiche fanno sì che ogni teoria generale della gravità possieda alcune grandezze definite localmente sullo spaziotempo, in particolare una corrente di Noether e la carica ad essa associata. La forma esplicita della corrente e della carica dipende invece dalla Lagrangiana che si sceglie di adottare per descrivere il campo gravitazionale. Il lavoro di tesi sarà orientato prima a descrivere come questa corrente di Noether emerge in qualunque teoria della gravità invariante per trasformazioni generali e come essa viene esplicitata nel caso di Lagrangiane particolari, per poi identificare la carica ad essa associata come una grandezza connessa all' entropia di un orizzonte in qualunque teoria generale della gravità.
Resumo:
Trotz des hohen Interesse an Ionischen Flüssigkeiten wird das zielgerichtete Design und die Anwendung Ionischer Flüssigkeiten durch fehlendes grundlegendes Verständnis erschwert. Deshalb wurde die Balance der molekularen Wechselwirkungen in Ionischen Flüssigkeiten studiert, um die Eigenschaften dieser zu verstehen und die Kraftfeldentwicklung im Rahmen des Multiskalenansatzes zu systematisieren. Es wurden reine Imidazolium-basierte Ionische Flüssigkeiten, Mischungen mit kleinen Molekülen und eine protische Ionische Flüssigkeit mit ab-initio-Methoden, hauptsächlich Car-Parrinello-Molekulardynamik, untersucht. Weiterhin wurden Eigenschaften der Flüssigphase mit denen von Ionenpaaren verglichen.rnIm Fokus standen die molekularen elektrostatischen Eigenschaften und es wurde gezeigt, dass Coulomb-Wechselwirkungen zu einzigartigen Charakteristika führten. So waren die Ionen-Nettoladungen stets reduziert, die molekularen Dipolmomentverteilungen sehr breit, elektronische Polarisation war entscheidend. Die elektrostatischen Eigenschaften waren allgemein lokal auf molekularen Größen- und Zeitskalen und hingen stark von Phasenzustand und Zusammensetzung ab. Für andere molekulare Eigenschaften, wie der Neigung zu dispersiven Kontakten oder Wasserstoffbrücken, wurde gezeigt, dass sie einen entscheidenden Einfluss auf die Feinstruktur Ionischer Flüssigkeiten hatten. Das Gleichgewicht der Wechselwirkungen zeigte sich auch in Leistungsspektren, die sich aus den ab-initio-Molekulardynamiksimulationen ergaben. Diese boten einen neuen Weg für den Vergleich zum Experiment und für einen Einblick in die schnelle Dynamik Ionischer Flüssigkeiten.
Resumo:
In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.