872 resultados para Multi-state systems
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.
Resumo:
IEEE Robótica 2007 - 7th Conference on Mobile Robots and Competitions, Paderne, Portugal 2007
Resumo:
Consumer-electronics systems are becoming increasingly complex as the number of integrated applications is growing. Some of these applications have real-time requirements, while other non-real-time applications only require good average performance. For cost-efficient design, contemporary platforms feature an increasing number of cores that share resources, such as memories and interconnects. However, resource sharing causes contention that must be resolved by a resource arbiter, such as Time-Division Multiplexing. A key challenge is to configure this arbiter to satisfy the bandwidth and latency requirements of the real-time applications, while maximizing the slack capacity to improve performance of their non-real-time counterparts. As this configuration problem is NP-hard, a sophisticated automated configuration method is required to avoid negatively impacting design time. The main contributions of this article are: 1) An optimal approach that takes an existing integer linear programming (ILP) model addressing the problem and wraps it in a branch-and-price framework to improve scalability. 2) A faster heuristic algorithm that typically provides near-optimal solutions. 3) An experimental evaluation that quantitatively compares the branch-and-price approach to the previously formulated ILP model and the proposed heuristic. 4) A case study of an HD video and graphics processing system that demonstrates the practical applicability of the approach.
Resumo:
Dissertation presented to obtain the degree of Doctor in Electrical and Computer Engineering, specialization on Collaborative Enterprise Networks
Resumo:
Os Sistemas de Apoio à Tomada de Decisão em Grupo (SADG) surgiram com o objetivo de apoiar um conjunto de decisores no processo de tomada de decisão. Uma das abordagens mais comuns na literatura para a implementação dos SADG é a utilização de Sistemas Multi-Agente (SMA). Os SMA permitem refletir com maior transparência o contexto real, tanto na representação que cada agente faz do decisor que representa como no formato de comunicação utilizado. Com o crescimento das organizações, atualmente vive-se uma viragem no conceito de tomada de decisão. Cada vez mais, devido a questões como: o estilo de vida, os mercados globais e o tipo de tecnologias disponíveis, faz sentido falar de decisão ubíqua. Isto significa que o decisor deverá poder utilizar o sistema a partir de qualquer local, a qualquer altura e através dos mais variados tipos de dispositivos eletrónicos tais como tablets, smartphones, etc. Neste trabalho é proposto um novo modelo de argumentação, adaptado ao contexto da tomada de decisão ubíqua para ser utilizado por um SMA na resolução de problemas multi-critério. É assumido que cada agente poderá utilizar um estilo de comportamento que afeta o modo como esse agente interage com outros agentes em situações de conflito. Sendo assim, pretende-se estudar o impacto da utilização de estilos de comportamento ao longo do processo da tomada de decisão e perceber se os agentes modelados com estilos de comportamento conseguem atingir o consenso mais facilmente quando comparados com agentes que não apresentam nenhum estilo de comportamento. Pretende-se ainda estudar se o número de argumentos trocados entre os agentes é proporcional ao nível de consenso final após o processo de tomada de decisão. De forma a poder estudar as hipóteses de investigação desenvolveu-se um protótipo de um SADG, utilizando um SMA. Desenvolveu-se ainda uma framework de argumentação que foi adaptada ao protótipo desenvolvido. Os resultados obtidos permitiram validar as hipóteses definidas neste trabalho tendo-se concluído que os agentes modelados com estilos de comportamento conseguem na maioria das vezes atingir um consenso mais facilmente comparado com agentes que não apresentam nenhum estilo de comportamento e que o número de argumentos trocados entre os agentes durante o processo de tomada de decisão não é proporcional ao nível de consenso final.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Most of today’s systems, especially when related to the Web or to multi-agent systems, are not standalone or independent, but are part of a greater ecosystem, where they need to interact with other entities, react to complex changes in the environment, and act both over its own knowledge base and on the external environment itself. Moreover, these systems are clearly not static, but are constantly evolving due to the execution of self updates or external actions. Whenever actions and updates are possible, the need to ensure properties regarding the outcome of performing such actions emerges. Originally purposed in the context of databases, transactions solve this problem by guaranteeing atomicity, consistency, isolation and durability of a special set of actions. However, current transaction solutions fail to guarantee such properties in dynamic environments, since they cannot combine transaction execution with reactive features, or with the execution of actions over domains that the system does not completely control (thus making rolling back a non-viable proposition). In this thesis, we investigate what and how transaction properties can be ensured over these dynamic environments. To achieve this goal, we provide logic-based solutions, based on Transaction Logic, to precisely model and execute transactions in such environments, and where knowledge bases can be defined by arbitrary logic theories.
Resumo:
Throughout recent years, there has been an increase in the population size, as well as a fast economic growth, which has led to an increase of the energy demand that comes mainly from fossil fuels. In order to reduce the ecological footprint, governments have implemented sustainable measures and it is expected that by 2035 the energy produced from renewable energy sources, such as wind and solar would be responsible for one-third of the energy produced globally. However, since the energy produced from renewable sources is governed by the availability of the respective primary energy source there is often a mismatch between production and demand, which could be solved by adding flexibility on the demand side through demand response (DR). DR programs influence the end-user electricity usage by changing its cost along the time. Under this scenario the user needs to estimate the energy demand and on-site production in advance to plan its energy demand according to the energy price. This work focuses on the development of an agent-based electrical simulator, capable of: (a) estimating the energy demand and on-site generation with a 1-min time resolution for a 24-h period, (b) calculating the energy price for a given scenario, (c) making suggestions on how to maximize the usage of renewable energy produced on-site and to lower the electricity costs by rescheduling the use of certain appliances. The results show that this simulator allows reducing the energy bill by 11% and almost doubling the use of renewable energy produced on-site.
Resumo:
A measurement of W boson production in lead-lead collisions at sNN−−−√=2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 nb−1 and 0.15 nb−1 in the muon and electron decay channels, respectively. The differential production cross-sections and lepton charge asymmetry are each measured as a function of the average number of participating nucleons ⟨Npart⟩ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of W boson production in multi-nucleon systems.
Resumo:
The main purpose of this work is to give a survey of main monotonicity properties of queueing processes based on the coupling method. The literature on this topic is quite extensive, and we do not consider all aspects of this topic. Our more concrete goal is to select the most interesting basic monotonicity results and give simple and elegant proofs. Also we give a few new (or revised) proofs of a few important monotonicity properties for the queue-size and workload processes both in single-server and multi- server systems. The paper is organized as follows. In Section 1, the basic notions and results on coupling method are given. Section 2 contains known coupling results for renewal processes with focus on construction of synchronized renewal instants for a superposition of independent renewal processes. In Section 3, we present basic monotonicity results for the queue-size and workload processes. We consider both discrete-and continuous-time queueing systems with single and multi servers. Less known results on monotonicity of queueing processes with dependent service times and interarrival times are also presented. Section 4 is devoted to monotonicity of general Jackson-type queueing networks with Markovian routing. This section is based on the notable paper [17]. Finally, Section 5 contains elements of stability analysis of regenerative queues and networks, where coupling and monotonicity results play a crucial role to establish minimal suficient stability conditions. Besides, we present some new monotonicity results for tandem networks.
Resumo:
This supplementary project has been undertaken as an effort to continue work previously completed in the Pooled Fund Study of Premature Concrete Pavement Deterioration. As such, it shares the objective of "Identifying the variables that are present in those pavements exhibiting premature deterioration," by collecting additional data and performing statistical analysis of those data. The approach and philosophy of this work are identical to that followed in the above project, and the Pooled Fund Study Final Report provides a detailed description of this process. This project has involved the collection of data for additional sites in the state of Iowa. These sites have then been added to sites collected in the original study, and statistical analysis has been performed on the entire set. It is hoped that this will have two major effects. First, using data from only one state allows for the analysis of a larger set of independent variables with a greater degree of commonality than was possible in the multi-state study, since the data are not limited by state to state differences in data collection and retention. Second, more data on additional sites will increase the degrees of freedom in the model and hopefully add confidence to the results.